第10章灰色系统理论与方法.ppt
《第10章灰色系统理论与方法.ppt》由会员分享,可在线阅读,更多相关《第10章灰色系统理论与方法.ppt(58页珍藏版)》请在优知文库上搜索。
1、数据挖掘技术与应用数据挖掘技术与应用第10章 灰色系统理论与方法 辽宁省物流航运管理系统工程重点实验室本章提纲 灰色系统的基础理论灰色系统的基础理论 10.1 灰色预测模型灰色预测模型 10.2 灰色聚类分析灰色聚类分析 10.3 灰色综合评价方法灰色综合评价方法 10.4 小结小结 10.5辽宁省物流航运管理系统工程重点实验室10.1灰色系统的基础理论灰色系统的基础理论 v10.1.1 灰色系统理论介绍灰色系统理论介绍 v10.1.2 灰色系统的特点灰色系统的特点 v10.1.3 灰色系统建模与适用范围灰色系统建模与适用范围 辽宁省物流航运管理系统工程重点实验室10.1.1灰色系统理论介绍
2、u灰色系统理论(Grey System Theory)的创立源于20世纪80年代。邓聚龙教授在1981年上海中美控制系统学术会议上所作的“含未知数系统的控制问题”的学术报告中首次使用了“灰色系统”一词。1982年,邓聚龙发表了“参数不完全系统的最小信息正定”、“灰色系统的控制问题”等系列论文,奠定了灰色系统理论的基础。他的论文在国际上引起了高度的重视,美国哈佛大学教授、系统与控制通信杂志主编布罗克特(Brockett)给予灰色系统理论高度评价,因而,众多的中青年学者加入到灰色系统理论的研究行列,积极探索灰色系统理论及其应用研究。辽宁省物流航运管理系统工程重点实验室10.1.1灰色系统理论介绍
3、u灰色系统是通过对原始数据的收集与整理来寻求其发展变化的规律。这是因为,客观系统所表现出来的现象尽管纷繁复杂,但其发展变化有着自己的客观逻辑规律,是系统整体各功能间的协调统一。因此,如何通过散乱的数据系列去寻找其内在的发展规律就显得特别重要。灰色系统理论认为,一切灰色序列都能通过某种生成弱化其随机性的模型而呈现本来的规律,也就是通过灰色数据序列建立系统反应模型,并通过该模型预测系统的可能变化状态。灰色系统理论认为微分方程能较准确地反应事件的客观规律,即对于时间为t的状态变量,通过方程就能够基本反映事件的变化规律。辽宁省物流航运管理系统工程重点实验室10.1.1灰色系统理论介绍 u目前,灰色系统
4、理论得到了极为广泛的应用,不仅成功地应用于工程控制、经济管理、社会系统、生态系统等领域,而且在复杂多变的农业系统,如在水利、气象、生物防治等方面也取得了可喜的成就。灰色系统理论在管理学、决策学、战略学、预测学、未来学、生命科学等领域有极为广泛的应用前景。辽宁省物流航运管理系统工程重点实验室10.1.2 灰色系统的特点 u概率统计、模糊数学和灰色系统理论是三种最常用的不确定性系统的研究方法,如表10.1所示。研究对象都具有不确定性,这是三者的共同点。正是研究对象在不确定性上的区别派生出三种各具特色的不确定性学科。辽宁省物流航运管理系统工程重点实验室10.1.2 灰色系统的特点 表10.1 灰色系
5、统与概率、模糊的对比 概率与数理统计样本量大、数据多但缺乏明显规律的问题,即“大样本不确定性”问题模糊数学人的经验及认知先验信息的不确定问题,即“认知的不确定性”问题灰色系统既无经验,数据又少的不确定性问题,即“少数据不确定性”问题辽宁省物流航运管理系统工程重点实验室10.1.2 灰色系统的特点 u灰色系统着重研究概率统计、模糊数学所不能解决的“小样本、贫信息不确定”问题,并依据信息覆盖,通过序列生成寻求现实规律。其特点是“少数据建模”。与模糊数学不同的是,灰色系统理论着重研究“外延明确,内涵不明确”的对象。比如:到2050年,中国要将总人口控制在15亿到16亿之间,这“15到16亿之间”就是
6、一个灰概念,其外延是非常明确的,但如果进一步要问到底是哪个具体值,则不清楚。灰色系统理论与概率论、模糊数学一起并称为研究不确定性系统的三种常用方法,具有能够利用“少数据”建模寻求现实规律的良好特性,克服了数据不足或系统周期短的矛盾。辽宁省物流航运管理系统工程重点实验室10.1.3 灰色系统建模与适用范围 u灰色系统GM(n,h)建模 灰色建模是进行灰色预测与灰色决策的基础,其建模过程可分为五步:语言模型、网络模型、量化模型、动态模型、优化模型。五步建模过程事实上是信息不断补充,系统因素及其关系不断明确,明确的关系进一步量化,量化后关系进行判断改造的过程,是系统由灰变白的过程。辽宁省物流航运管理
7、系统工程重点实验室10.1.3 灰色系统建模与适用范围 u灰色模型和其他任何模型一样,不可能具有普遍适用性,而是有其特定的建模条件。灰色模型的特点在于其建模机理与其他模型不同,在建模的数据处理上,通过灰色序列生成找寻数据演变的规律性。在进行灰色系统建模前需要判断序列是否是光滑序列,数据序列是否满足灰指数规律。灰色系统的模型GM(n,h)是以灰色模块概念为基础,以微分拟合法为核心的建模方法。其中n表示微分方程阶数,h表示参与建模的序列个数,用得较多的是GM(1,1)模型。GM(n,h)建模原理如下:辽宁省物流航运管理系统工程重点实验室10.1.3 灰色系统建模与适用范围 u定理:给定下列序列:,
8、i1,2,h;t=1,2,N;有相应的一阶累加序列:,i1,2,h;t=1,2,N;其中:为一次累加序列;并有相应的多次累差序列:,i1,2,h;t=1,2,N;j=1,2,m。)()0(tXi)()1(tXiikiikxtx1)0()1()()(),()()(txatij辽宁省物流航运管理系统工程重点实验室10.1.3 灰色系统建模与适用范围 当j=1时有 (10.1)当j=2时有 (10.2)当j=3时有 (10.3)()()1(),()0()1()1()1()1(txtxtxtxaiiii)()1(),()0()0()1()2(txtxtxaiii),()1,(),()1()1()1()
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 10 灰色 系统 理论 方法
