2023大数据可视分析技术.docx
《2023大数据可视分析技术.docx》由会员分享,可在线阅读,更多相关《2023大数据可视分析技术.docx(39页珍藏版)》请在优知文库上搜索。
1、大数据可视化分析技术综述目录大数据可视化分析技术综述11引言32可视化和可视分析概述62.1 可视化62.2 可视化查询语言72.3 可视分析与自动数据分析82.4 可视分析的数据准备92.5 图驱动的数据获取102.6 识指导的数据增强102.7 量感知的数据清洗103.1 分析意图驱动的数据获取103.2 领域知识指导的数据增强123.3 分析质量感知的数据清洗134智能数据可视化144.1 智能数据可视化概述154.2 领域知识指导的数据可视化推荐204.3 数据特征驱动的数据可视化推荐214.4 融合分析意图的数据可视化推荐214.5 基于参考对象的数据可视化推荐224.6 考虑用户偏
2、好的数据可视化推荐234.7 基于混合策略的数据可视化推荐235高效可视分析244.8 能254.9 计算框架255.1 基于高效数据管理的高效可视分析255.2 可视化感知的高效可视分析275.3 人工智能驱动的高效可视分析285.4 基于硬件和计算框架加速的高效可视分析296智能可视分析接口297研究展望与未来趋势387.1 面向可视分析的数据准备387.2 智能数据可视化397.3 高效可视分析397.4 智能可视分析接口397.5 智能可视分析的评测基准407.6 智能可视分析的应用生态408总结401引三随着计算机硬件和大数据处理技术的高速发展,海量数据智能分析的瓶颈已经从“如何快速
3、地处理海量数据”转变为“如何从海量数据中快速有效地挖掘出有价值的信息可视化和可视分析基于人类的视觉感知特性,结合数据分析和人机交互等技术,利用可视化图表去解构复杂数据中蕴含的知识和规律.这种技术贯穿于数据科学的全生命周期,被誉为大数据智能领域的最后一公里,已在许多大数据应用分析场景取得令人瞩目的效果.因此,中国科技创新2030”新一代人工智能”和“大数据”专项都将可视化和可视分析列为大数据智能的关键技术g1.触电如图1所示,传统的可视分析极度依赖用户频繁主动地参与可视分析的全生命周期41标备、叫你3,化限射。f机化以研圉恂户交近.可便分析等舲段,M用户的干般投他”较为,泵段的Wie化程度较低U
4、Mt,传统的可彼分析1宜系维。花可屈分析归门播.故找发着代馅为,文?1.响应归姬居交现楂式效率低酬(战.为了提高可视分析系统的整体效能研究者们M从人工智能和数据管理的视角出发,将人工智能和数据管理技术赋能可视化和可视分析系统,提高系统的智能化程度,进而帮助用户高效地参与可视分析全生命周期的数据准备、可视化、可视分析交互等环节,优化可视分析的人机协作模式,提高可视分析的质量和效率.基于此,智能数据可视分析(intelligentdatavisualizationanalysis)的概念应运而生,其核心思想是“算法赋能”和“以简驭繁二通过数据管理和人工智能技术赋能可视分析的工作流,将传统可视分析工
5、作流中的用户的主动探索和分析变为机器算法的智能辅助探索和分析,降低可视化和可视分析的生产和消费成本,协同优化可视分析全生命周期的数据管理、可视化和可视分析的人机协作模式,致力于辅助用户高效地进行可视分析.从学科关系的视角出发,如图2所示,智能数据可视分析是以数据管理和人工智能技术为支撑,通过人机交互手段进行交互式数据分析,通过可视化手段进行数据的信息解构和分析结果的直观呈现,帮助用户快速地从海量数据中挖掘出有价值的信息.从可视化工作流的视角出发,如图1所示,智能数据可视分析技术可以优化传统可视分析工作流的人机协作模式,提高可视分析的效能.具体而言,智能数据可视分析技术可以优化传统可视分析工作流
6、中的数据准备、可视化生成、大数据高效可视分析和可视分析人机交互接口4个模块.接下来,本文将困绕上述4个模块,展开介绍智能数据可视分析技术.现有挑战数枕布飞大、工1卜”也;Ad改耍析推成本至曲可E)析出口检分4结果不精准交互应花延迟交4q式效忠低分析:应对智能数据可视分析框架面向可视分析的数1准备智能数据可视化高效可视分析,分析意图驱动的数据获取I领域知识指导的数据地兴I分析质n密知的数据清洗I领域知识I数据特征I分析意函1参考对象I用户偏好?昆立镜略1I“r一J.J实时大规KJ溶染菠化感知的数据索引M似另询处理it化?%的故据4样智能可视分析接口渐进式可视化IT咎式可视分析为口JI白嬷酒;搜索
7、Mi交,1卜一rOa智能分析故“发述接U数据不备收据可视化映射旧可视化形式可视化结果治染轮图I数据管理1_!数据可视化据务图数任意可视分析结果可视分析)用户交互交互设计可视分析工作流6A传统可视分析人机协作模式智能可视分析人机协作模式图1N视分析工作流和智能数据可视分析技术框架(1)面向可视分析的数据准备:传统可视化和可视分析工作流中的数据准备工作没有针对可视化和可视分析的特点进行优化,存在数据准备代价高、数据质量较敏感和分析维度不全面的挑战.首先,在数据发现阶段,传统方法没有根据用户的分析任务进行相关数据集/数据元组的发现,从而导致在数据准备阶段融合了大量对可视分析无关或者没有蕴含足够洞察的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 数据 可视 分析 技术
