专题1-4椭圆与双曲线22类常考题型汇总.docx
《专题1-4椭圆与双曲线22类常考题型汇总.docx》由会员分享,可在线阅读,更多相关《专题1-4椭圆与双曲线22类常考题型汇总.docx(47页珍藏版)》请在优知文库上搜索。
1、专题1-4椭圆与双曲线22类常考题型汇总后跖题型解读知识点梳理模块一:椭圆与双曲线的基本性质【题型1】椭ID与双曲线的定义与概念【题型2】双曲线的渐近线相关计算【题型3】求焦点三角形面积【题型4)定义法求轨迹【题型5】设点运算求轨迹方程题型6光学性质【题型7】椭Bl与双曲线共焦点问题模块二:最值问题【题型8】坐标轴上的点与椭圆距离最短【题型91直线与椭圆距离最短【题型10线段和差最值问题【题型11焦点弦的最小值【题型12焦半径的最小值问题【题型13利用基本不等式求最值模块三:求离心率与其它值【题型14结合余弦定理求焦半径【题型15余弦定理用2次【题型16构造齐次化方程【题型17双焦点三角形模型
2、:导边【题型18利用几何性质求离心率【题型20与向量结合【题型21其它计算求值问题【题型22求离心率范围知识点梳理一、椭圆的基本量1 .如图(1),过椭圆的一个焦点且与长轴垂直的弦48=,称为通径.图(1)图(2)2 .如图(2),尸为椭圆上的点,尸1,B为椭圆的两个焦点,且NFlPF2=8,则/IPB的面积为.3 .椭圆上的点到焦点距离的最大值为,最小值为.4 .设尸,A,8是椭圆上不同的三点,其中4,8关于原点对称,则直线以与尸8的斜率之积为定值I2加夕b21. 2.Dltan-3.a-rc。-c4.ra2a1二、直线与椭圆1 .直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,
3、消去一个变量得到关于x(或刃的一元方程:0r2+Zx+c=0(或炉+8+c=0).(1)若0,可考虑一元二次方程的判别式,有:40直线与圆锥曲线;Z=O”直线与圆锥曲线;4Z,0)上的一组对称点,尸为椭圆上任意点,则有证明(点差法):设P(x,),A(x2,y2)fB(-x2,-y2),kp4山X1-x2M+乃玉+X2VP,A在椭圆上,代入坐标得4=a2b2+=lab-两式相减得:.2个+J,%2=0,整理得必:一%:=_a2h2x12-X22a2中点弦和第三定义本质上是一样的法二:通过椭圆的垂径定理转换k.kk.kPANPBrvOMNPBb221*y核心题画7模块一:椭圆与双曲线的基本性质【
4、题型1】椭圆与双曲线的定义与概念1 .已知方程4+为2+加+小+或+尸=0,其中力6CO2EF.现有四位同学对该方程进行了判断,提出了四个命题:甲:可以是圆的方程;乙:可以是抛物线的方程;丙:可以是椭圆的标准方程;丁:可以是双曲线的标准方程.其中,真命题有()A.1个B.2个C.3个D.4个【答案】C【分析】根据圆,抛物线,椭圆及双曲线的方程特点结合条件分析即得.【详解】因为方程4+砂2+c,+w+/=o其中z5coeF,所以当4=8=1C=0=E=O/=一1时,方程为/+/-I=。,即Y+/=1是圆的方程,故方程可以是圆的方程;当Z=18=C=0=OE=-1尸=一2时,方程为2-2=0,即N
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 椭圆 双曲线 22 类常考 题型 汇总
