《人工智能深度学习应用开发》题库答案.docx
《《人工智能深度学习应用开发》题库答案.docx》由会员分享,可在线阅读,更多相关《《人工智能深度学习应用开发》题库答案.docx(20页珍藏版)》请在优知文库上搜索。
1、1.人工神经网络2. 机器学习3. 监督学习模式无监督学习模式4. 真实值(groundtruth5. 人工神经网络6. 数据量大计算力提升网络规模大7. 数据量硬件依赖特征工程解决问题的方法执行时间可解释性8. 计算机视觉自然语言处理强化学习9. B10. C11. C12. C13. D14. C15. D16. AB17. 18. 19. 20. 21. 22. 23. 24. 25. 人工智能最核心的部分可以理解为类似人的大脑,就是机器学习,机器学习是实现人工智能的核心方法,人工智能的核心就是由各种算法作为支撑的。神经网络简单来说就是机器学习众多算法中的一类,其原理就是模仿人脑的思维逻
2、辑。26. TheanOxSCikit-Ieam、Caffe、TorchMXNetPyTorCh、KerasTensorFlow027. 深度学习中的每种算法都具有相似的学习过程,深度学习过程的步骤如下:(1)选择相关数据集并准备进行分析;(2)选择要使用的算法,基于算法构建分析模型;(3)在训练数据集上训练模型,并根据需要对模型进行修改;(4)对训练得到的模型进行测试。28. 深度学习与机器学习的区别,深度学习与机器学习的主要区别体现在以下几个方面:数据量机器学习可以处理大量数据也可以处理少量数据,随着数据量的增加,机器学习的处理效果没有明显变化。而深度学习的特点在于,在一定范围内,随着数据
3、量的增加,深度学习的处理效果是上升的。(2)硬件依赖与传统的机器学习算法不同,深度学习算法需要执行大量的矩阵乘法运算,因此深度学习需要计算机的计算能力做支撑。(3)特征工程深度学习避免了开发每个新问题的特征工程的问题。数据和特征决定了机器学习的上限,算法和模型不过是逼近这个上限。深度学习不用像传统机器学习那样人为的合成高级复杂特征,深度学习只需利用经过先验知识处理的一阶特征,就可以学习到相关的高级复杂特征。(4)解决问题的方法传统的机器学习遵循标准程序,将问题分解成多个部分,先解决每个问题,然后将他们组合起来以获得最终的结果。而深度学习侧重于端到端的解决问题。执行时间深度学习因数据量的庞大和模
4、型参数的众多,一般需要大量的时间进行训练,机器学习所需要的执行时间则相对较短。(6)可解释性可解释性是比较机器学习和深度学习算法的主要因素。机器学习算法为我们提供了清晰的规则和可解释的算法推理过程,因此像决策树、逻辑回归等机器学习算法主要用于工业中需要可解释性的场景中。深度学习算法主要是通过仿生的神经网络做算法推理。29. 无监督学习中,训练样本未按其所属的类别进行标记。无监督学习模型是识别无标签数据结构的模型。该模型通过寻找具有共同特征的数据,并根据数据内部知识特征对其进行分类,这种学习算法适用于聚类问题。30. 有监督学习以训练集作为模型的输入,其中每个样本都有标注信息,我们称标注信息为真
5、实值(groundtruth)o模型的输出值与真实值之间的差值用损失函数(IoSS)来衡量,采用最小损失函数执行训练过程。训练完成后,使用验证集或测试集测量模型的准确性。31. 略32. 略33. 略1 .深度学习2 .图像识别自然语言处理3 .张量4 .计算图(COmPUtatiOnGraph)5 .标量向量矩阵张量6 .数值型字符串型布尔型7 .监督学习8 .向量9 .D10 .B11 .D12 .13 .14 .15 .16 .17 .18 .TensorFlow框架具有许多优点,如高度灵活性、真正的可移植性、连接研究与产品、自动微分、多语言选择以及最大化性能六大特性。19 .Tenso
6、rFlow的主要功能有以下几个方面:以张量的多维数组轻松定义、优化和计算数学表达式;(2)支持深度神经网络和机器学习技术的编程;(3)具有多种数据集、网络模型等高度可扩展的计算模块;(4)允许模型部署到工业生产的应用中;(5)支持GPU计算,实现了自动化管理。提供了对初学者友好的高级APIKeraS接口。20 .例:importtensorflowastfa=tf.constant(5)print(八)print(a是维Tensor*.format(a.ndim)21 .例:pat.v1astfpat.v1.disable_eager_execution()matrix1=tf.constan
7、t(3,3,1,2,2,2,1,1,1)matrix2=tf.constant(2,3,4)product=tf.matmul(matrixl,matrix2)print(product)withtf.Session()assess:result=sess.run(product)print(result)22 .答案详见2.6节。23 .答案详见2.7节。单元31 .用户友好模块化易扩展性基于PythOn实现2 .序列式(SeqUential)函数式(FUnCtional)子类(SUbCIaSSing)3 .激活函数损失函数优化器正则化器4 .目标函数5 .有准确率(ACCUraCy)精确度
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能深度学习应用开发 人工智能 深度 学习 应用 开发 题库 答案
