大题02 数列求和(解析版).docx
《大题02 数列求和(解析版).docx》由会员分享,可在线阅读,更多相关《大题02 数列求和(解析版).docx(18页珍藏版)》请在优知文库上搜索。
1、大题02数列求和近几年高考,数列中新定义是必考内容,难度较大,作为压轴题呈现大题典例1数列中新定义问题(2023北京东城统考二模)已知有穷数列A:如出,453)中的每一项都是不大于的正整数.对于满足的整数加,令集合A(7)=M&=6,=1,2,.记集合A(M中元素的个数为S(M(约定空集的元素个数为0).若46,3,2,5,3,7,5,5,求A(5)及5(5九+=,求证:49,M互不相同;(3)已知=,%=匕,若对任意的正整数i0i+%)都有i+JwA(,或i+jwA(%),求+%+anffy值.【解】(1)因为=%=4=5,所以45)=4,7,8,则s(5)=3(2)依题意s(q)l,i=l
2、,2,,则有4.Km(J因此HHf3皿s(q)s(a2)Sa)又因为一+一+!=,人0仪式4)S(G)s(an)9所以s(q)=l所以4Ma互不相同.(3)依题意=a,%=b由i+/A(ai)或i+JeA(aj),知ai+j=或ai+j=aj,令J=I,可得=4或=卬,对于,=2,3,.-1成立,故。3=%或a3=%当二b时,%=4=af,=a,所以q+g+an=na.当出人时,%=。或%=b.当生=。时,由%=%或4=4,有。4=a,同理%=,=4=。,所以+an=(n-)a+b,当见二人时,此时有4=%=。,令i=l,j=3,可得4A()或4AS),即%=。或4=b.令i=l,/=4,可得
3、5wA()或5AS).令i=2,j=3,可得5A(b).所以=.若出=。,则令,=1.)=4,可得=。,与&=)矛盾.所以有=6.不妨设4=G=at=b(k5),令i=t,j=k+惟=23,-1),可得A+1AS),因此4+=R令i=l,j=k,则a=或/+=氏故k=b所以4+%+an=n-V)b+a,综上,4=时,+弓+an=na.=时,q+%+an=(n-)a+b.时,al+a2+a11=(n-)b+a.解壮族导数列新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明
4、对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念,要将新性质有机地应用到旧性质上,创造性的解决问题.49变式(2023北京人大附中校考三模)有穷数列勺洪小项(m3)其各项均为整数,任意两项均不相等.4=4-q+J(j=l,2,m-l),bi+l(=l,2,w-2).若6:0,1,求知的取值范围;若z=5,当同取最小值时,求的最大值;I=I三l.一!若14KM=1,2,.,M,Z4=?+1,求机的所有可能取值.*=1【解】(1)由题设4=IO-II
5、=I%=Il-引,则1一引1,pi-7或1-41,所以为2或七0,任意两项均不相等,故用工。、工1,故出的取值范围6e(-8,0)2,+8)且6WZ;(2)由“各项均为整数,任意两项均不相等,要使之同最小,即同尽量小,(=1则(士同焉=0+1+1+2+2,故/中的前5项为-2T0J2,J=I4要使Zbi最大,即I%I+1%-%I+1%-4I+1%-I最大,/=I而2bM,则14-2国。2-。3国内-4国a4-a5不妨令的=2,只需依次使1%-61,&J%-%一生I取到最大,要使I%-生I最大,则4=-2;要使I/I最大,M=h要使1%-%I最大,则。2=T,故4=0;此时I%I=4%-&I=3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大题02 数列求和解析版 02 数列 求和 解析
