专题14 抛物线(解析版).docx
《专题14 抛物线(解析版).docx》由会员分享,可在线阅读,更多相关《专题14 抛物线(解析版).docx(48页珍藏版)》请在优知文库上搜索。
1、专题14抛物线目录一览2023真题展现考向一直线与抛物线真题考查解读近年真题对比考向一抛物线的性质考向二直线与抛物线命题规律解密名校模拟探源易错易混速记/二级结论速记考向一直线与抛物线1.(多选)(2023新高考II第10题)设O为坐标原点,直线y=-5(X-1)过抛物线C:y2=2px(p0)的焦点,且与。交于M,N两点,/为C的准线,则()A. =2B. MN=gC.以MN为直径的圆与/相切D.AOMN为等腰三角形【答案】AC解:直线y=-5(X-I)过抛物线C:yP=2px(p0)的焦点,可得=1,所以p=2,所以A正确;抛物线方程为:9=4彳,与C交于M,N两点,直线方程代入抛物线方程
2、可得:3-10x+3=0,10xm+xn=y所以MN=xm+xn+p=卒所以8不正确;M,N的中点的横坐标:中点到抛物线的准线的距离为:1+:=(所以以MN为直径的圆与/相切,所以C正确:32-10x+3=0,不妨可得XM=3,Xn=py,M=-23,M=芋,IOM=9+12=21,TOM=木瑶=写,IMM=争所以4OWN不是等腰三角形,所以。不正确.真题考查解读,【命题意图】考查抛物线的定义、标准方程、儿何性质、直线与抛物线.考查运算求解能力、逻辑推导能力、分析问题与解决问题的能力、数形结合思想、化归与转化思想.【考查要点】抛物线的定义、方程、性质是高考常考内容,以小题出现,常规题,难度中等
3、.【得分要点】一、抛物线的定义平面内与一个定点F和一条定直线1(1不经过点Q距离相等的点的轨迹叫做抛物线.点尸叫做抛物线的焦点,直线1叫做抛物线的准线.注,在抛物线定义中,若去掉条件“1不经过点尸,点的轨迹还是抛物线吗?不一定是,若点尸在直线I上,点的轨迹是过点尸且垂直于直线1的直线.定义的实质可归纳为“一动三定”一个动点M一个定点及抛物线的焦点);一条定直线(抛物线的准线);一个定值(点好到点尸的距离与它到定直线1的距离之比等于1).二、抛物线的方程及简单几何性质准线jr=f性质范围*20,yRjtO,yRjrR,y20xR,y0开口方向向右向左向上向下三、直线与抛物线的位置关系设直线Ity
4、=kx+mt抛物线:=2px(p0),将直线方程与抛物线方程联立整理成关于N的方程般+2(knp)x2=0.(1)若AO,当“0时,直线与抛物线相交,有两个交点;当4=0时,直线与抛物线相切,有一个交点;当40)的焦点的直线交抛物线于4(万,万),B(出,H)两点,那么线段四叫做焦点弦,如图:设四是过抛物线/=2Rr(P0)焦点尸的弦,若4(禹,/1),B(x2,,则I四I=Jn+花+P.(2)%度=一/(3) IAB=汨+石+p=si30(a是直线形的倾斜角).1 19(4)卤+卤=定值(户是抛物线的焦点).(5)求弦长问题的方法一般弦长:I羔I=#1+/|曷一股I,或I四I=/1+去|%一
5、.|焦点弦长:设过焦点的弦的端点为NGbJi),Ba,万),则=与+乃+.B近年真题对比考向一抛物线的性质2.(多选)(2022新高考H)已知O为坐标原点,过抛物线C:=2px(p0)焦点/的直线与C交于A,B两点,其中4在第一象限,点M(p,0).若HFl=HM,则()A.直线AB的斜率为2EB.OB=OFC.AB4OF【解答】解:如图,D.NQAM+NOBMV1800(至返),422由抛物线焦点弦的性质可得XA八二正一,则XDxAxB4B等r,kAB=kAF=飞=26,故A正确;上,则B(2.,厚,IobIP_P420F=-tOBOF,故8错误;932H用=晋制+ph2p=4O,故C正确;
6、oa2=ob2am2=IbmI2=m=p.ioyioyVOA2+Afl2Ofl2,OB1+BM202,ZOAMf/08”均为锐角,可得NOAM+NO8MV180,故。正确.故选:ACD.A.1B.2C.22D.43. (2021新高考II)若抛物线)?=2力(p0)的焦点到直线y=x+l的距离为,则P=()【解答】解:抛物线=2pK(p0)的焦点(,0)到直线y=x+l的距离为5,恃-0+1I可得17=5,解得p=2.2故选:B.4. (2021新高考I)已知O为坐标原点,抛物线Cy2=2px(p0)的焦点为F,P为C上一点,PF与X轴垂直,。为X轴上一点,且PQ_1.oP.若FQ=6,则C的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题14 抛物线解析版 专题 14 抛物线 解析
