欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    必修4学案(修改).docx

    • 资源ID:880969       资源大小:531.44KB        全文页数:58页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    必修4学案(修改).docx

    §1.1任意角和弧度制§任意角学习目标1.推广角的概念,引入大于360°的角和负角、零角;2.理解并掌握正角、负角、任意角及象限角的概念;3.掌握所有与角终边相同的角的表示方法;4.树立运动变化观点,揭示知识背景,深刻理解推广后的角的概念,引发学习兴趣。学习过程1 .复习初中学习角的定义及范围:角的定义:角可以看成平面内一条绕着从一个位置旋转到另一个位置所形成的图形。范围:2 .举例实际生活中是否有些角度超出初中所学的范围?体操比赛中术语:“转体720°”(即转体周),“转体1080°”(即转体周);(2)时针快了5分钟,现要校正,需将分针怎样旋转?(一时针旋转度),如果慢了5分针又该如何校正?(一时针旋转度)。(3)按逆时针方向旋转形成的角叫做,按顺时针方向旋转形成的角叫做。如果一条射线没有作任何旋转,我们称它形成一个它的和重合。3 .我们常在内讨论角,为了讨论问题的方便,使角的与重合,角的_与_重合那么,角的落在第几象限,我们就说这个角是如果叫的终边落在坐标轴上,就认为这个角(1)-150°(2)1000°-900°例2:写出终边在以下位置上的角的集合:(1)y轴(2)直线y=x总结提升学习小结1 .角的推广;2 .象限角的定义;3 .终边相同角的表示;4 .终边落在坐标轴时;5 .区间角的表示。知识拓展第一象限角:×360o<a<90°+×360°,z第二象限角:1900+&x360°VaVI80°+A360°,Az第三象限角:4180°+Zx360°VV270°+&360°,%z第四象限角:70o+×360°v<36(+Zx360°,Zz4.与。角终边相同的角,都可以用式子+Ax360"表示,ZZ,写成集合为卷典型例题例1:在0°360°之间,找出以下终边相同的角1.460°是()A.第一象限角B.第二象限角C第三象限角D.第四象限角2.在0°360°范围内,与-60°终边相同的角是()A.30'B.60jC.300°D.33'3.0°90。间的角可表示为()A.MO<iz<90°B.40°<90C.40。<90°D.0°<90'4 .一个角为30°,其终边按逆时针方向旋转一周后的角的度数为5 .集合M="0=攵x90°,ZZ中,各角的终边都在课后作业A组1.在0°720°之间,找出与以下各角终边相同的角,并判定它们是第几象限角。(1)720°(2)760°2.分别写出在以下位置上的角的集合:(1) 轴负半轴;(2) X轴;(3)第一、三象限角平分线;(4)第四象限角平分线。§弧度制心学习目标1 .理解Irad的角的定义,掌握弧度与角度的换算,熟练特殊角的弧度制。2 .了解在弧度制下,角的集合与实数集之间是一一对应的。3 .会运用弧长公式、扇形面积公式,求解相关问题。A学习过程1 .把长度等于的一所对的圆心角叫做1弧度的角,用符号_表示。读作弧度。用弧度制表示角时,“弧度”二字或单位符号“rad”可以省略不写。2 .因为周角的弧度数是:,而在角度制下的度数是360,所以:360'=rad180°=radf=radIrad=3 .(1)I=;S=;S=.其中R是半径,/是弧长,a(0<a<2)为圆心角,S是扇形的面积.4 .角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了关系:即每一个角都有唯的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.卷典型例题SJF例1:(1)把67"30化成弧度;(2)把化成12度。例2:扇形AoB的面积是1C?"2,它的周长是4C7”,那么弦A3的长等于多少西?令总结提升学习小结1 .弧度制的定义;2 .弧度制表示的弧长公式、扇形面积公式;3 .角的集合与实数集R之间建立的一一对应关系.知识拓展(1)1弧度的角的大小与所取的圆的半径大小无关。(2)弧度制与角度制都是用来度量角度的大小,但是当用弧度或角度表示同一式子时,两种单位不能混用,像600+2M(ZZ)是错误的.1.假设=3,那么角。的终边在()1.2.1任意角的三角函数A.第一象限B.第二象限C.第三象限D.第四象限0学习目标2.以下各对角中终边相同的角是().L了解单位圆的意义;A.一和F2%)(&Z)22)七22B.和23l,1C.和9920万122D.和393.时钟经过一小时,时针转过了().2 .掌握任意角的三角函数的定义;3 .理解三角函数线的画法与意义学习过程知识点归纳梳理:1.设是一个任意角,它的终边与单位圆交于点P(X,y),那么:(1)y叫的正弦,记作Sin2,即A.radB.rad66Sina=.C.radD.rad1212(2)X叫的正弦,记作COSa,即COStZ=;4 .两个圆心角相同的扇形的面积之比为1:2,那么两个扇形周长的比为O.A.1:2B.1:4C.k2Dl:85 .以下命题中正确的命题是().A.假设两扇形面积的比是1:4,那么两扇形弧长的比是1:2.B.假设扇形的弧长一定,那么面积存在最大值.C.假设扇形的面积一定,那么弧长存在最小值.D.任意角的集合可以与实数集R之间建立一种对应关系.课后作业51.(1)把112°3(化成弧度制;(2)把一五化成角度制.(3)上叫做的正切,记作tan。,即Xtana=(x0)。JT可以看出,当。=+%乃也走Z)时,的终边在2y轴上,这时点P的横坐标x=0,所以Iana=2X无意义。除此之外,对于确定的角,上述三个值都是唯一确定的。所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。2 .设是一个任意角,它的终边与单位圆交于点P(X0,X),r=址+式,那么:sina-COSa=tana=(x0O)3 .终边相同的角的同一三角函数的值相等。2.圆弧长度等于截其圆的内接正三角形边长,求其圆心角的弧度数?公式':sin(+2k=CoSQ+2k=tan( + 2kr) =4、画出角的终边分别在四个不同象限有三角函 数线,根据图形指出其正弦线、余弦线、正切线。例L求以下各角的三角函数值:3夕例2.角的终边经过点P (3,-4),求角二的三 角函数值。A.1B.-1C.D.-222.sin-=().6A.1B,-1C.3DT22223.如果角的顶点在原点,始边在X轴的正半轴重合,终边在函数y=5x(x<0)的图象上,那么tana的值为().A.5B.-5C.-D.-554 .cos(-30o)=.5 .点尸(勿,-4a)3A0)在角a的终边上,那么tana=.课后作业1.求以下各角的正弦、余弦和正切值:(I);(2).(3)一纹2342.角a的终边在直线.y=2x上,求a的正弦、余弦和正切值.1.2.2同角三角函数的根本关系学习目标1 .掌握同角三角函数的根本关系;2 .掌握同角三角函数根本关系的应用过程知识点归纳梳理:sin2a+cos2a=例3.确定以下三角函数值的符号,并说明理由 oS乃(1) COSl65(2) tan3(3) sin 6【.学习小结:三角函数的定义主要用数形结合的方 法进行,同学们在学习过程中必须画出图形,结 合图形进行理解记忆,不能死记硬背;公式一是 对任意角的三角函数求值问题转换为0 2万间 的三角函数求值的重要依据。2.知识拓展: 化简求值:3Ti .(1) a2cos+b2sn+abcos2-absn-K.22Slna_中O=II=TCoSa一(2) -p2cosl80°÷<72sin90,-2wcos0°一务典型例题其中p=g例L夕是第二象限的角,且COS/=-得,求sin,tan的值。I.tan(-)=().432a3C3+-B.3-4÷-A.SinX=,求COSX,tanX的值。例2.例3.求证:1 1)sinl.cosa = -,a(O,r),那么 tana 的值等a-cos4a=sin tana ,利用同角三角函数根本关系求Sina,cosa ,写出其关系式。a-cos2a(2)CoSetan夕=Sin夕总结提升1.学习小结:同角三角函数的根本关系的两个公式是三角函数化简与证明的重要公式,熟练掌握两个根本公式并对其进行多种变换,是对本节课的一个根本要求。2 .知识拓展:(1)利用sin?a+cos?。=】,你能对其作出哪些变形?侬课后作业A组1.6是第三象限角,且Sin,O+CoS'O=*,那么sin6>cos6>=()22A.r>.C.-9D.-33332.如果角。满足Sine+cos6=J,那么tan。+-的值是()tanA.-1B.-2C.1D.2ft,r,/1+sina/1-sinE3 .假设J;:J-:=-2tana,那V1-sinaV1+sma么角a的取值范围是.B组1÷sinx1COSx1. =一一,那么的值是Cosx2sinx-11 1A.-B.-C.2D.-2222.假设tana=3,那么sm;a+2cos;a的值为C组.4十1+2SinaCOSatana+11.求证:=sina-cosatana-1A.43B.D.2.假设tana=Ji5,那么COSa=sina=.3.化简sin2a÷sin2sin2asin2÷cos2acos2-.4.sina=(,求CoSa,tana的值.5.sinacosa=,那么CoSasina的值等于2.sin7+cos7=且0<v).(1)求sin?COS/7、Sin齐一COS力的值;对称,那么与£的三角函数值之间有什么关(2)求Sin夕、cos/?>tan/7的值.3.化简:tan(cossina)÷Sina(Sina+tana)1 +cosa§1.3三角函数的诱导公式§诱导公式1WL学习目标1.借.助单位圆,推导出正弦,余弦的诱导公式。2.正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值,化简和恒等式证明问题。卷学习过程问题1:如何把任一角的三角函数的求值问题转化为0°-360ro间三角函数的求值问题?问题2:任意角a的终边

    注意事项

    本文(必修4学案(修改).docx)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开