欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    SF01数Ch11定积分的应用.docx

    • 资源ID:836210       资源大小:35.34KB        全文页数:6页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    SF01数Ch11定积分的应用.docx

    SFOl(数)Ch11定积分的应用计划课时:8时P1291332002.02.25.Ch11定积分的应用(8时)§1平面图形的面积(2时)一.直角坐标系下平面图形的面积:1. 简单图形:X-型和Y-型平面图形.2. 简单图形的面积:给出X型和丫-型平面图形的面积公式.对由曲线2x,y)=0和G(My)=O围成的所谓“两线型”图形,介绍面积计算步骤.注意利用图形的几何特征简化计算.(参阅4P232-240E8693)例1求由曲线xy=i,x-y=0,x=2围成的平面图形的面积.例2求由抛物线V=K与直线x-2y-3=0所围平面图形的面积.32(1P338E1及图11一2,)33. 参数方程下曲边梯形的面积公式:设区间句上的曲边梯形的曲边由方程%=z(r),y=y(t),al仇(a)=a,%(尸)=b给出.又设就有力(。/,于是存在反函数=z,(x).由此得曲边的显式方程y(0=Mz-1U),x三a,h.bS=JlMz"(x)dx=J>'(r),tdt,aa亦即S=ydx=yt)dt).aa具体计算时常利用图形的几何特征.例3求由摆线x=(-sinf),y=(l-CoSf)(4>0)的一拱与X轴所围平面图形的面积.(1P338E2,3al)二.极坐标下平面图形的面积:推导由曲线厂=(。)和射线6=。,=( <夕)所围“曲边扇形”的面积公式.为r,顶角为八。的扇形面积为-r2 .2I A = lr2(<9)t6> .例4 求由双纽线r2 = or cos26>解 cos200, =>94 4(简介微元法,并用微元法推导公式.半径)所围平面图形的面积.或二万,巳).(可见图形夹在过极点,倾角44TT为土一的两条直线之间).以e代,方程不变,=图形关于X轴对称;以乃-e4代6,方程不变,n图形关于y轴对称.(参阅lP340图11一6)14因此A=4f/cos2的。=a2.2J40ExlP340-34116,9;4P260-262115(1)(3),116(2)(3),117(1)(6X8),118(3)(8),119(1X3),120(1)(3)(5).§2已知塞势立体的体积(2时)已知幕势立体的体积:设立体之事为A(X),x.,勿.推导出该立体之体积V = J A(x)dx.祖Bfi原理:夫塞势即同,则积不容异.(祖随系祖冲之之子,齐梁时人,大约在五世纪下半叶到六世纪初)例1求由两个圆柱面X2+/=a2和/+z2=/所围立体体积1P342E1(a3)3222例2计算由椭球面与+一=1所围立体(椭球)的体积.ab-c41P342E2(-abc)3二.旋转体的体积:定义旋转体并推导出体积公式.hV=万jf2(x)dx.a例3推导高为,底面半径为的正圆锥体体积公式.例4求由曲线工-尸=0和工一=0所围平面图形绕X轴旋转所得立体体积.例5求由圆/+(y-20)225绕X轴一周所得旋转体体积.(1000/)例6D:y=eX=O,X轴正半轴.。绕X轴旋转.求所得旋转体体积.Ex1P3451,2(1X2),3,5*;4P262121(1X3)(8X9)00).§3 曲线的弧长(1时)弧长的定义:定义曲线弧长的基本思想是局部以直代曲,即用折线总长极限定义弧长.可求长曲线.二.弧长计算公式:光滑曲线的弧长.设L:X=(t),y=yQ),at,又A(2(),y(),B(/(夕),y(4),/和y(Z)在区间,切上连续可导且N2+y,2()则L上以4和B为端点的弧段的弧长为=JizW+yw2为证明这一公式,先证以下不等式:对V,"cR+,有ya2+b2-ya2+c2Ib-c,(ChI§1EX第5题(P4).其几何意义是:在以点3,»,(a,c)和(0,0)为顶点的三角形中,两边之差不超过第三边.)事实上,2 +b2 -ya2 +c2 I =.一。2|WVj一Vtz2+b2+>Ja2+c2II+1ClI+cI为证求弧长公式,在折线总长表达式中,先用Lagrange中值定理,然后对式J/2(5)+y2c;)插项进行估计.参阅P347.如果曲线方程为极坐标形式r=r(9),6,0,连续可导,则可写出其参数方程X=r(6)cose,y=r(0)sin.于是S=J=M)+r,)d.aa例131P348349E13.Ex1P3521.§4 旋转曲面的面积(1时)用微元法推出旋转曲面的面积公式:曲线方程为y=(x),xa,3时,=>S=2f(x)y+f,2(x)dx;a曲线方程为X=(t),y=y(t),f,夕时,=>S=2可y(x)Jr2(t)+yr2(t)dt.a例12HP355356E12.Ex1P3561(1)-(3),2.§5 5定积分的物理应用举例(2时)例12P356358E12.例31P359360E4.Ex1P3603611,3,4.

    注意事项

    本文(SF01数Ch11定积分的应用.docx)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开