欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    第07章离散因变量和受限因变量模型.ppt

    • 资源ID:536545       资源大小:1.02MB        全文页数:69页
    • 资源格式: PPT        下载积分:9金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第07章离散因变量和受限因变量模型.ppt

    1 通常的经济计量模型都假定因变量是连续的,但是在通常的经济计量模型都假定因变量是连续的,但是在现实的经济决策中经常面临许多选择问题。人们需要在可现实的经济决策中经常面临许多选择问题。人们需要在可供选择的有限多个方案中作出选择,与通常被解释变量是供选择的有限多个方案中作出选择,与通常被解释变量是连续变量的假设相反,此时因变量只取有限多个离散的值。连续变量的假设相反,此时因变量只取有限多个离散的值。例如,人们对交通工具的选择:地铁、公共汽车或出租车;例如,人们对交通工具的选择:地铁、公共汽车或出租车;投资决策中,是投资股票还是房地产。以这样的决策结果投资决策中,是投资股票还是房地产。以这样的决策结果作为被解释变量建立的计量经济模型,称为离散被解释变作为被解释变量建立的计量经济模型,称为离散被解释变量数据计量经济学模型(量数据计量经济学模型(models with discrete dependent variables),或者称为离散选择模型),或者称为离散选择模型(discrete choice model,DCM)。2 在实际中,还会经常遇到因变量受到某种限制的情况,在实际中,还会经常遇到因变量受到某种限制的情况,这种情况下,取得的样本数据来自总体的一个子集,可能这种情况下,取得的样本数据来自总体的一个子集,可能不能完全反映总体。这时需要建立的经济计量模型称为受不能完全反映总体。这时需要建立的经济计量模型称为受限因变量模型(限因变量模型(limited dependent variable model)。这两。这两类模型经常用于调查数据的分析中。类模型经常用于调查数据的分析中。3 在离散选择模型中,最简单的情形是在两个可供选择的在离散选择模型中,最简单的情形是在两个可供选择的方案中选择其一,此时被解释变量只取两个值,称为二元选方案中选择其一,此时被解释变量只取两个值,称为二元选择模型(择模型(binary choice model)。在实际生活中,我们经常)。在实际生活中,我们经常遇到二元选择问题。例如,在买车与不买车的选择中,买车遇到二元选择问题。例如,在买车与不买车的选择中,买车记为记为1,不买记为,不买记为0。是否买车与两类因素有关系:一类是车。是否买车与两类因素有关系:一类是车本身所具有的属性,如价格、型号等;另一类是决策者所具本身所具有的属性,如价格、型号等;另一类是决策者所具有的属性如收入水平、对车的偏好程度等。如果我们要研究有的属性如收入水平、对车的偏好程度等。如果我们要研究是否买车与收入之间的关系,即研究具有某一收入水平的个是否买车与收入之间的关系,即研究具有某一收入水平的个体买车的可能性。因此,二元选择模型的目的是研究具有给体买车的可能性。因此,二元选择模型的目的是研究具有给定特征的个体作某种而不作另一种选择的概率。定特征的个体作某种而不作另一种选择的概率。4 为了深刻地理解二元选择模型,首先从最简单的线性概率为了深刻地理解二元选择模型,首先从最简单的线性概率模型开始讨论。线性概率模型的回归形式为:模型开始讨论。线性概率模型的回归形式为:(7.1.1)其中:其中:N是样本容量;是样本容量;k是解释变量个数;是解释变量个数;xj为第为第j个个体特征个个体特征的取值。例如,的取值。例如,x1表示收入表示收入;x2表示汽车的价格表示汽车的价格;x3表示消费表示消费者的偏好等。设者的偏好等。设 yi 表示取值表示取值为为0和和1的离散型随机变量:的离散型随机变量:式(式(7.1.1)中)中ui为相互独立且均值为为相互独立且均值为0的随机扰动项。的随机扰动项。ikikiiiuxxxy2211Ni,2,101iy择(如不买车)如果作出的是第二种选择(如买车)如果作出的是第一种选5 令令pi=P(yi=1),那么那么 1-pi=P(yi=0),于是于是(7.1.2)又因为又因为E(ui)=0,所以,所以 E(yi)=xi,xi=(x1i,x2i,xki),=(1,2,k),从而有下面的等式:从而有下面的等式:(7.1.3)iiiipyPyPyE)0(0)1(1)(xiiiipyPyE)1()(6 式式(7.1.3)只有当只有当xi 的取值在的取值在(0,1)之间时才成立,否则就会之间时才成立,否则就会产生矛盾,而在实际应用时很可能超出这个范围。因此,线性产生矛盾,而在实际应用时很可能超出这个范围。因此,线性概率模型常常写成下面的形式:概率模型常常写成下面的形式:(7.1.4)此时就可以把因变量看成是一个概率。此时就可以把因变量看成是一个概率。那么扰动项的方差为:那么扰动项的方差为:(7.1.5)或或 (7.1.6)0,01,110,xxxxiiiiip)1()1()()1()(222iiiiiiippppuExx)(1)()(22iiiiyEyEuE7 由此可以看出,误差项具有异方差性。异方差性使得参由此可以看出,误差项具有异方差性。异方差性使得参数估计不再是有效的,修正异方差的一个方法就是使用加权数估计不再是有效的,修正异方差的一个方法就是使用加权最小二乘估计。但是加权最小二乘法无法保证预测值最小二乘估计。但是加权最小二乘法无法保证预测值在在(0,1)之内,这是线性概率模型一个严重的弱点。由于上述问题,之内,这是线性概率模型一个严重的弱点。由于上述问题,我们考虑对线性概率模型进行一些变换,由此得到下面要讨我们考虑对线性概率模型进行一些变换,由此得到下面要讨论的模型。论的模型。假设有一个未被观察到的潜在变量假设有一个未被观察到的潜在变量yi*,它与,它与xi之间具有之间具有线性关系,即线性关系,即 (7.1.7)其中:其中:ui*是扰动项。是扰动项。yi和和yi*的关系如下:的关系如下:(7.1.8)*iiiuyx0001*iiiyyy8 yi*大于临界值大于临界值0时,时,yi=1;小于等于;小于等于0时,时,yi=0。这里把。这里把临界值选为临界值选为0,但事实上只要,但事实上只要xi包含有常数项,临界值的选择包含有常数项,临界值的选择就是无关的,所以不妨设为就是无关的,所以不妨设为0。这样。这样 (7.1.9)其中:其中:F是是ui*的分布函数,要求它是一个连续函数,并且是的分布函数,要求它是一个连续函数,并且是单调递增的。因此,原始的回归模型可以看成如下的一个回单调递增的。因此,原始的回归模型可以看成如下的一个回归模型:归模型:(7.1.10)即即yi关于它的条件均值的一个回归。关于它的条件均值的一个回归。)()()0(),|0()(1)()0(),|1(*xxxxxxiiiiiiiiiiiiFuPyPyPFuPyPyPiiiuFyx19 分布函数的类型决定了二元选择模型的类型,根据分布函分布函数的类型决定了二元选择模型的类型,根据分布函数数F的不同,二元选择模型可以有不同的类型,常用的二元选择的不同,二元选择模型可以有不同的类型,常用的二元选择模型如表模型如表7.1所示:所示:ui*对应的分布对应的分布分布函数分布函数F 相应的二元选择模型相应的二元选择模型标准正态分布标准正态分布Probit 模型模型逻辑分布逻辑分布Logit 模型模型极值分布极值分布Extreme模型模型)(x)1(xxee)exp(1xe10 二元选择模型一般采用极大似然估计。似然函数为二元选择模型一般采用极大似然估计。似然函数为 (7.1.11)即即 (7.1.12)对数似然函数为对数似然函数为 (7.1.13)01)()(1 iiyyiiFFLxxNiyiyiiiFFL11)(1)(xxNiiiiiFyFyL1)(1ln)1()(lnlnxx11 对数似然函数的一阶条件为对数似然函数的一阶条件为 (7.1.14)其中:其中:fi 表示概率密度函数。那么如果已知分布函数和密度表示概率密度函数。那么如果已知分布函数和密度函数的表达式及样本值,求解该方程组,就可以得到参数的函数的表达式及样本值,求解该方程组,就可以得到参数的极大似然估计量。例如,将上述极大似然估计量。例如,将上述3种分布函数和密度函数代种分布函数和密度函数代入式入式(7.1.14)就可以得到就可以得到3种模型的参数极大似然估计。但是种模型的参数极大似然估计。但是式式(7.1.14)通常是非线性的,需用迭代法进行求解。通常是非线性的,需用迭代法进行求解。二元选择模型中估计的系数不能被解释成对因变量的边二元选择模型中估计的系数不能被解释成对因变量的边际影响,只能从符号上判断。如果为正,表明解释变量越大,际影响,只能从符号上判断。如果为正,表明解释变量越大,因变量取因变量取1的概率越大;反之,如果系数为负,表明相应的的概率越大;反之,如果系数为负,表明相应的概率将越小。概率将越小。NiiiiiiiiFfyFfyL10)1()1(lnx12 考虑考虑Greene 给出的斯佩克特和马泽欧(给出的斯佩克特和马泽欧(1980)的例子,在例子中分析了某种教学方法对成绩的有效的例子,在例子中分析了某种教学方法对成绩的有效性。因变量(性。因变量(GRADE)代表在接受新教学方法后成)代表在接受新教学方法后成绩是否改善,如果改善为绩是否改善,如果改善为1,未改善为,未改善为0。解释变量。解释变量(PSI)代表是否接受新教学方法,如果接受为)代表是否接受新教学方法,如果接受为1,不,不接受为接受为0。还有对新教学方法量度的其他解释变量:。还有对新教学方法量度的其他解释变量:平均分数(平均分数(GPA)和测验得分()和测验得分(TUCE),来分析新),来分析新的教学方法的效果。的教学方法的效果。13 估计二元选择模型,从估计二元选择模型,从Equation Specification对话框中,对话框中,选择选择Binary估计方法。在二元模型的设定中分为两部分。首估计方法。在二元模型的设定中分为两部分。首先,在先,在Equation Specification区域中,键入二元因变量的名区域中,键入二元因变量的名字,随后键入一列回归项。由于二元变量估计只支持列表形字,随后键入一列回归项。由于二元变量估计只支持列表形式的设定,所以不能输入公式。然后,在式的设定,所以不能输入公式。然后,在Binary estimation method中选择中选择Probit,Logit,Extreme value选择三种估计选择三种估计方法的一种。以例方法的一种。以例7.1为例,对话框如图为例,对话框如图7.2所示。所示。1415 例例7.1的估计输出结果如下:的估计输出结果如下:16 参数估计结果的上半部分包含与一般的回归结参数估计结果的上半部分包含与一般的回归结果类似的基本信息,标题包含关于估计方法(果类似的基本信息,标题包含关于估计方法(ML表示极大似然估计)和估计中所使用的样本的基本表示极大似然估计)和估计中所使用的样本的基本信息,也包括达到收敛要求的迭代次数。和计算系信息,也包括达到收敛要求的迭代次数。和计算系数协方差矩阵所使用方法的信息。在其下面显示的数协方差矩阵所使用方法的信息。在其下面显示的是系数的估计、渐近的标准误差、是系数的估计、渐近的标准误差、z-统计量和相应统计量和相应的概率值及各种有关统计量。的概率值及各种有关统计量。17 在回归结果中还提供几种似然函数:在回归结果中还提供几种似然函数:log likelihood是对数似然函数的最大值是对数似然函数的最大值L(b),b是是未知参数未知参数 的估计值。的估计值。Avg.log likelihood 是用观察值的个数是用观察值的个数N去除以对去除以对数似然函数数似然函数L(b),即对数似然函数的平均值。,即对数似然函数的平均值。Restr.Log likelihood是除了常数以外所有系数被是除了常数以外所有系数被限制为限制为0时的极大似然函数时的极大似然函数L(b)。LR统计量检验除了常数以外所有系数都是统计量检验除了常数以外所有系数都是0的假的假设,这类似于线性回归模型中的统计量,测试模型整体的设,这类似于线性回归模型中的统

    注意事项

    本文(第07章离散因变量和受限因变量模型.ppt)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开