欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    3.3垂径定理演示文稿.ppt

    • 资源ID:467556       资源大小:647.50KB        全文页数:14页
    • 资源格式: PPT        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    3.3垂径定理演示文稿.ppt

    第三章 圆3.3 垂径定理 等腰三角形是轴对称图形吗?如果将一等腰三角形沿底边上的高对折,可以发现什么结论?如果以这个等腰三角形的顶角顶点为圆心,腰长为半径画圆,得到的图形是否是轴对称图形呢?类比引入类比引入AM=BM,O OA AB BC CD DMM CD是是直径 CDAB可推得 AC=BC,AD=BD.条件结论如图,AB是O的一条弦,作直径CD,使CDAB,垂足为M。(1)该图是轴对称图形吗?如果是,其对称轴是什么?(2)你能图中有哪些等量关系?说一说你的理由。猜想探索连接OA,OB,则OA=OB.OA AB BC CD DMM在RtOAM和RtOBM中,OA=OB,OM=OM,RtOAMRtOBM.AM=BM.点A和点B关于CD对称.O关于直径CD对称,当圆沿着直径CD对折时,点A与点B重合,AC和BC重合,AD和BD重合.AC=BC,AD=BD.OA AB BC CD DMMCDAB,CDAB,CD是直径,AM=BM,AC=BC,AD=BD.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。几何语言垂径定理垂径定理判断下列图形,能否使用垂径定理?OCDBA注意:定理中的两个条件缺一不可直径(半径),垂直于弦想一想BOCDAOCDECDAB,垂径定理的逆定理OC CD D 由 CD是直径 AM=BM可推得 AC=BC,AD=BD.M MA AB B平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.O1)下图是轴对称图形吗?如果是,其对称轴是什么?(2)图中有哪些等量关系?说一说你的理由.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如果该定理少了“不是直径”,是否也能成立?想一想OCDBAE EO OD DC CF F例:如图,一条公路的转弯处是一段圆弧(即图中CD,点0是CD所在圆的圆心),其中CD=600m,E为CD上的一点,且OECD,垂足为F,EF=90m.求这段弯路的半径。知识应用解这个方程,得R=545.E EO OD DC CF F解:连接OC,设弯路的半径为Rm,则OF=(R-90)m。OECD根据勾股定理,得 OC=CF+OF即 R=300+(R-90).所以,这段弯路的半径为545m.3006002121 CDCF1、1400年前,我国隋朝建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(即弧的中点到弦的距离)为7.2米,求桥拱所在圆的半径。(结果精确到0.1米)。随堂练习2、如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?OCDBAOCDBAOCDBAFE有三种情况:1、圆心在平行弦外;2、圆心在其中一条弦上;3、圆心在平行弦内。随堂练习若O中弦ABCD。那么ACBD吗?为什么?解:ACBD,理由是:作直径MNAB。ABCD,MNCD。则AMBM,CMDM(垂直于弦的直径平分弦所对的弧)AMCM BM DMACBD.M MC CD DA AB BO ON N1、利用圆的轴对称性研究了垂径定理及其逆定理.2、解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连接半径等辅助线,为应用垂径定理创造条件.C CD DA AB BO OM MN NE E.A AC CD DB BO O.A AB BO O归纳小结

    注意事项

    本文(3.3垂径定理演示文稿.ppt)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开