欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    中浅层地热能清洁供暖新模式探索.docx

    • 资源ID:1895965       资源大小:32.65KB        全文页数:5页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中浅层地热能清洁供暖新模式探索.docx

    中浅层地热能清洁供暖新模式探索地热是一种可再生清洁能源。我国地热资源丰富,不受气候、季节、环境的制约,更加稳定可靠。在我国能源转型的征程中,地热能也显示出独特优势和巨大潜力,对推动实现“3060”目标具有重要意义。当前,气候变暖是人类面临的最严峻、最紧迫的全球性问题之一。目前,全球二氧化碳等温室气体排放中,80%以上来自于化石能源的使用。我国向国际社会承诺实现碳达峰碳中和目标,首要任务就是促进清洁能源快速发展,减少对化石能源的过度依赖。我国已经明确将地热能作为可再生能源供暖的重要方式,正在积极研究促进地热能开发利用的具体措施,加快营造有利于地热能开发利用的政策环境。这组数据印证了我国地热能产业发展取得的突出成绩:2020年我国地热直接利用装机容量达40.6吉瓦,占全球的38%,连续多年位居世界首位。其中,地热供暖装机容量7.0吉瓦,地热热泵装机容量26.5吉瓦,分别比2015年增长138%、125%0截至2020年底,我国地热能供暖制冷面积累计达到13.9亿平方米,继续保持世界第一。其中,水热型地热能供暖5.8亿平方米,浅层地热能供暖制冷8.1亿平方米。“十三五”期间,我国地热能以多种形式替代化石能源的作用逐渐显现,成为可再生能源非电利用的主要方式。根据意见,到2025年,各地基本建立起完善规范的地热能开发利用管理流程,全国地热能开发利用信息统计和监测体系基本完善,全国地热能供暖(制冷)面积比2020年增加50%,在资源条件好的地区建设一批地热能发电示范项目,全国地热能发电装机容量比2020年翻一番;到2035年,地热能供暖(制冷)面积及地热能发电装机容量力争比2025年翻一番。另外,生态环境部等十部门和相关七省(市)人民政府10月联合发布的2021-2022年秋冬季大气污染综合治理攻坚方案指出,鼓励各地积极采用生物质能、太阳能、地热能等可再生能源供暖方式,大力支持新型储能、储热、热泵、综合智慧能源系统等技术应用,探索推广综合能源服务,提高能源利用效率。因此可以说,我国地热发展将迎来一个新的黄金发展期。地源热泵技术是实现浅层地热供暖(制冷)的主力记者:目前,我国地热能供暖(制冷)面积累计达到近14亿平方米,位居世界第一。意见提出“十四五”时期即到2025年,全国地热能供暖(制冷)面积比2020年增加50%,到2035年力争比2025年翻一番。您认为主要通过哪些技术可实现国家制定的目标?蒋向明:浅层地热能一般是指深度小于200米、温度小于25摄氏度,中浅层地热能一般是深度200-1500米、温度25-40摄氏度,主要利用地缘热泵技术,实现供暖(制冷)。我国浅层地热能分布广泛、应用前景广阔。我国中东部共143个地级以上城市,是最适宜开发利用浅层地热能的地区,年可开采量折合标准煤4.6亿吨,可实现建筑物供暖制冷面积210亿平方米,可基本满足地区供暖制冷需要。浅层地热能利用方式主要是通过地源热泵技术。这是一种利用浅层地热能源的低品位热源,既可供热又可制冷的高效节能的空调技术,实现对建筑物供暖、制冷、热水三联供系统的能源供给,是目前浅层地热能最主要的开发利用方式。地源热泵主要分为地埋管热泵、地下水热泵和地表水源热泵。实践中我们在河北邯郸建设的河北工程大学4号能源站,夏季设计日峰值冷负荷为19979千瓦,冬季设计日峰值热负荷为15834千瓦,供暖面积为21万平方米。单能源站制冷量达到近20000千瓦的地源热泵项目在华北地区比较少见,为华北地区大规模使用地源热泵技术提供了技术支撑。还有我们在河北定州农村煤改地源热泵技术,利用“一拖二拖三”或“二拖四”,实现规模化推广应用。“一拖二”即一个室外机带动两个室内机运转的机型,室外埋设1个地埋换热管,可满足60平方米制冷供热面积;“一拖三”满足90平方米制冷供暖面积,室外埋设2个地埋换热管;“二拖四”满足100平方米以上制冷供暖面积,室外埋设2个地埋换热管。另外,我们在西部的宁夏和内蒙古地区利用“地源热泵+太阳能联合系统”开展浅层地热供暖示范工程,由于单供暖地区建筑热负荷较大,容易破坏地下温度场平衡,加入太阳能后,地源热泵在供暖季运行时土壤温度的波动相对较小,可保证联合系统的高效、平稳运行,开创了高寒地区“地热+太阳能”供暖模式,实践效果非常好。在江浙和西南地区,水源热泵的推广应用也很成功。比如,四川营山医院供暖面积约12万平方米,空调总冷负荷约为9649千瓦,空调总热负荷约为4983千瓦,应用污水源热泵,冬、夏季应用污水处理厂的中水作为冷热源,为整个建筑群冬季供热、夏季空调制冷,实现该区域的恒温。中深层地热”取热不取水”引领技术变革记者:地源热泵技术有独特的优势,但也有占地面积大、易形成冷堆积、地源热泵系统在密度高规模大的城区建筑或者温度较低的寒带地区应用受到限制等弱点;而中深层地热又存在钻孔水量不足、干孔、砂岩回灌困难、区域水位下降套管腐蚀等问题,有什么新的思路和技术为中深层地热能的开发利用创造新的路径?蒋向明:中深层地热能一般指深度15004000米、温度40100摄氏度,属于水热型地热能,可用以满足温泉洗浴、供暖或一般工业需求。针对中深层地热能钻孔水量不足、干孔、砂岩回灌困难、区域水位下降、套管腐蚀等系列问题,我们转变思想,改进中深层地热采热技术,研发出“取热不取水”技术,为地热资源可持续发展探索出新方向。实践中,我们在河北工程大学建设的“U型井”,垂直深度2500米,水平距离684米,就是“取热不取水”技术的典型案例。图U型对接井闭式换热技术其特点是:供暖初期和后期的中温天气,采用地热能供暖。供暖中期的寒冷低温天气采用地热能+燃气补充,该对U型井能够为7万8万平方米的节能建筑物提供热源,每年可节约标准煤1040吨,可减排二氧化碳2725吨、二氧化硫8.8吨、氮氧化物7.8吨、粉尘70.7吨。而且,地热井不需要维护,不需要更换设备,使用寿命长,运行成本低,社会效益、环境效益、经济效益显著。通过技术创新,解决了砂岩回灌、钻孔水量不足等难题。经过专家组鉴定,该项目取得三项成果:一是首次成功钻探了我国第一眼大口径长距离换热U型对接井,在我国中深层地热能“取热不取水”开发利用技术上取得重大突破;二是在不扰动地下热水系统实现保护性开采、提高地热供暖换热量方面取得系列科研成果,达到国内及国际先进水平;三是引领了我国北方地区地热供暖方式的变革,可作为中深层地热”取热不取水”技术重要的示范基地,值得在全国范围内广泛推广应用。

    注意事项

    本文(中浅层地热能清洁供暖新模式探索.docx)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开