欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    专题16二次函数的存在性问题(解析版).docx

    • 资源ID:1664422       资源大小:517.40KB        全文页数:53页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    专题16二次函数的存在性问题(解析版).docx

    专题16二次函数的存在性问题【典例分析】【考点11二次函数与相似三角形同JI【例1】己知Ii物线y=+b+3与X轴分别交于八(-3,0),8(1,0)两点,与y*交于点C.(1)求务物线的表达式及原点D的坐标I(2)点F是线段AD上一个动点.ACI如图1.设A=77,当卜为何值时,CF=-AD.D2如图2.以A,F,O为1点的三角形是否与AABC相似?若相似,求出点F的坐标.若不相似,请说明理由.【答案】">y=-x2-2.x+3,D的坐标为(-1.4);(2)*=:以A,F.O为国立的角形%AABC相似,F点的坐标为(一之或(-2,2).【解析】U的A、B两点的型标代入二次函数解析式,用待定系数法即求出她物线对应的函数去达式,可求得顶点D-1.4);(2)由A、C、D:点的+%;求出AC=炕,DC=0,AD=2而,可得AAeD为直角:角形,分CF=gAD.则京F为AD的中点,可求出k的侑;2由条件可判断NDAC=NoBC.则NOAF=/ACB,若以A.F,O为:菱的JUWjAABe相似.可分两种情况考虑:巧/AOF=/ABC或AOF=CAB=45'时,可分别求下点FKR"详解1(I).抛物线y=a+bx+3过点A(-3.0),B(1.0),(9-3ft+3=0«=-1n+Z>+3=0p=-2,楸物浅辘析式为y=-x2-2x+3; :y=-x:-2x+3=-(x+1.)?+4.顶点D的坐标为(-1,4);(2).在RiAOC中,OA=3.OC=3,.AC2=OA2+OC2=18-.D(-1.4),C(0.3),A(-3,0),.-.CD2=I2+I2=2-.AD3=22+42=20.AC2+CD2=AD2.ACD为Kft-:珀形.HZzACD=901.CF=-AD.2:F为AD的中点.AFI >=一,D2【讲解】将4-1.0),C(0,3)代入y=+2x+c得:a-2+c=0Ia=-IR,解得Rc=3(c=3 抛物殴解析代为y=-+2*+3<2)存在.理由如下:联立y=-1.和y=-2+2+3.y=-I(=-I.V=4,C.mn或U37=-x+2x+3y=0(y=-5.E点坐标为(4.5).如图,作AE的垂直平分线,与X轴交TQ,与y相交于Q'.此时Q点与Q戊的坐标即为所求,设Q点坐标(8),Q,坐标(0.y).HQA=QE,QA=QE得:|x-(-1.)|=7(.t-4)2+(O+5):.7(0+1.f+(y-0)2=7(0-4)2+(y+5)2解得x=4y=4故(?点坐额为(40)或(0,-4)<3)V4(-1,0).E(4,-5):AE=-1.-4)2+52=52.1.-+2x+3=OH.好得工=-1或3AB点坐标为(3.0),:OB=OC=3z<BC=45o.AB=4BC=21.1.1.1.1.F=-X-If;1AE,y轴的交点为(0.1.),而A点W标为(-1.0)ZBE=45o设p(m,0)则8P=3-m.P8C。4AE机短.PBABCPBAEa.-m_43-m坊BCAEBCB325232439'":f"m=或in=>52【点睹】本题写出:次函数的嫁合问题,是中考常见的压轴趣中,熟练掌招待定系数法求函数解析式,等眈:角形的性侦,以及相似三角形的性侦是解速的美镀.(*1.12如图,已知It物线F=-1.x+2)(X-M(m>01.与'轴相交于点A,B,与>轴相交于点C,in且点A在点B的左例.(1)若拗物线过点(2,2),求抛物线的解析式I(2)在Q)的条件下,货物线的对玄轴上是否存在一点H,使AH+CH的值量小,若存在,求出点H的坐标】若不存在,请说明理由I(3)在第四象限内,拙物线上是否存在点M使得以点A,B,M为蹊点的三角形与AACB相似?若存在,求出m的值;若不存在,请说明理由.【答案】,1)y=+(2)点H的坐标为(1.;):(3)1.m=2+22t在第四代上内422他为线上存在点M,使得以点A.B.M为顶点的:.角形与AACB相似.【所】分析:(1)把白,22)代入y=-1.(x+2Mx-m)?j>中.解出m的值即可得到衲物纹的嚼折式:m<2)It1.(1)中所得解析式求出点A、B、C的坐标.例题意可知,点A、B关于抛物线的对称轴对称,这样连接BC与对称轴的交,点即为所求的点H,根抠B.C的坐标求出直线BC的解析式即Ur求得点H的坐标;(3)由解析苴v=一一(x+2»x-m)?m>可得点AnBwCI.别为<-2,0>,(m.0)和<0,2),m如下图,由图可知NACB和NABM足饨角,囚此存在两种可能性:"1ACB<ABM.ACBsMBA,分这两种情况结介题中已知呆件进行分析解答即可.详解:(I)把点(2.2)代入抛物线,得2=-(2+2)(2-m).解得m=4.,帕勒城的解析式为y=-(x+2)(x-4)=-!-x2+-!-x+2442<2)y=-X2+-X+2=0.解得x=-2,x,=4.42则A(-2.0).B(4,0).二点C的坐标为(0.2).;点A和点B关于拗物线的对称轴对称.连接BC与对称轴的交点即为点H.此时AH+CH的值最小,设U线BC的解析式为y=kx+b,4k+b=0k=-把B<4,OXC(0.2)代入得:<,一,解得:2,1=2卜=2;"找BC的解析式为y=-x+2.1IX=I时.V=-X1+2=.-22小H的坐标为<1.-).2(3)假设存在点M,使得以点A.B.M为顶点的三角形与ACB相似.如下图.连接AC.BC.AM.BM.过点M作MN_1.x轴干点N.由图易知,ZACB和NABM为钝角,I1.'ACB-ABMII:.仃-.即AB?=ACJM-ABAMVA(-2,O),C<0,2),即OA=OC=2,ZCAB=ZBAm=45*'-VMN1.x1.ZBAM=ZAMN=450,AN=MN.二可设M的坐标为:(X,x2>(X>O).把点M的坐标代入抛物线的解析式,x-2=-(x+2)(x-m).化简整理得:x=2m.二点M的坐标为I(2m.-2m-2).AM=J(2m+2f+(-2m-2)i=22(m+1.),.AB2=ACiNbAC22AB=m+2.,.(m+2)'=22×22(m+1.).科得:m=2±20Vm>0.m=2+20当AACBSMBA时.寸缥=婆,即AB2=CBMAMABAVZCBa=ZBAM,ZAXM=ZBOC=9,ANMBOC.=ANBOVBO=m,设ON=x.二型二2,hjjmn=-(x+2).2+xmm令M(x.(x+2)(x>0),m把M点的坐标代入抛物线的解析人,得-(x+2)=-(x+2)(x-n).mm解得x=m+2.即M(m+2.-(m+4).m''AB:=CB,MA-CBJnf+4,AN=in+4,(in+4),m'(m+2):=nr+4i+H:吼Vm'化简里理,得16=(),辕然不成立.W1."im=2+20时在第四象限内岫物殴I/F以M,使得以点A.B.M为蹊点的三角形与AACB相似.点降本题是一道二次函数和几何图形踪介的题目解题的嬖点有以下两点,(1)“知道点A、B是关于她物线的对构:轴对称的,连接BC与对称釉的交点即为所求的点H”是解答第2小题的关键:(2)“傥根据甥盒Irai出符合要求的图形,知道/ACB和NABM为钝焦,结合题意得到存在:(D?UCB-XBM.Aacbsmba这两种Ur能情况”是解答第3小SS的关神.【考点21二次函数与直角三角形问题2如图,发物线y=aF+6+c(“#O)的旗点坐标为(2.-1),图象与Y轴交于点C(0.3),与,轴(I)求为物线的解析式I(2)设触物线对称轴与直线仅、交于点。,连接AC、AD,求aACO的面枳I点E为亶线BC上的任意一点,过点£作*轴的塞线与撤物线交于点尸,问是否存在点E使£)£尸为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.【答案】(1)y=(x-2)2-1.=.t2-4x+3;2)2;(3)见解析.CMfr1.(1)可谀她物践解析式为顶点式,把C点坐标代入可求褥附物规解析式:(2)由他物线解析式可求得A.B坐标.利用待定系数法可求得出线BC解析式.利用对称轴可求得D点坐标,则可求得AD1、AC1.和CDj,利用勾股定理的逆定理可判定AACD为出角:角形.则可求得其面积(3)根据题总可分NDFE=9(T和NEDF=900两种情况.当NDFE=90。时,可知DFx柏,则可求得E点双坐标.代入她物线解析式U1.求得E点碓林:当EDF=90。时,可求得百.线AD解析式,联立巴找AC和抛物设解析式可求得点E的横坐标,代入f1.跷BC可求得点E的坐标.【详解】解:Y物物找的顶点坐标为.UJ设她狗戌解析式为y=(-2)2-1.(0).把C(0,3)代入可得(0-2尸一I=3,斜得=1,;抛均浅解析式为y=(K-2尸-1=V-©+3:(2)在),=W-4x+3中.令,=。可得i-4x+3=()解得K=I或x=3,4(1.0).3(3,0).设践BC好析式为F=履+3.把8(3,0)代入阳:3+3=O.解徨R=T,二直tBC解析式为y=-+3,I1.i(I)可知抛物线的对称值为x=2.此时y=-2+3=1,D(2,1.).AD-=2AC2=IO-5=8,.AD2+CD2=AC2:.&ACD以AC为斜边的G角曲形.Sw=gAOCZ>=g2=2:(3)由四苣知£“FM.则/77)=OC3h90.aDEF为贪角加形.分ND尸E=90和/ED/=90两种仙况,(DZDFE=90Uh即。尸.叮,则。、F的姒坐标相同.二尸点飒坐标为1,v.,JWfc.-4x+3=1解得=2±I即点£的横”:标为2±JI-I侬BCI.“'x=2+点时y=-x+3=1.-e."tr=2-0时y=-x+3=1.+2E点生标为(2+2,1.-2)i(2-2,1.+2):当NEDb=90时,V4(1.0).D(2J).)线Az)解析或为J=X-1,;直线6C解析式为y=-+3.,.AD1.HC.,H线AD1.j抛物线的交点即为E点.联立工线AD与抛物炫解折式有x3-4x+3=x-1.解符x=1.或x=4,当X=I时,y=-x+3=2,当=4时,y=-x+3=-1.二E点*标为(1,2)或(4,-1),淙:可知。花满足条件的dEd标为(2+TII-J

    注意事项

    本文(专题16二次函数的存在性问题(解析版).docx)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开