6.4.1 平面几何中的向量方法(导学案)(解析版)公开课教案教学设计课件资料.docx
6.4.1平面几何中的向量方法导学案响声学习目标I.通过平行四边形这个几何模型.归纳总结出用向量方法解决平面几何的问题的“三步曲“:2 .明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示;3 .让学生深刻理解向量在处理平面几何问题中的优越性.廿t重点难点1 .教学重点:用向量方法解决实际问题的基本方法:向地法解决几何问题的“三步曲”;2 .教学难点:如何将几何等实际问题化归为向量问题.知识点一用向量解决偌见平面几何问邈的技巧时加类型所用知识公式表示线平行、点共线等问题向瞅共线定理ab<a-z<Av2X2V-0.我中=(x,y),b=(xj,)'2).M)垂直问遨数负枳的运算性质a±b<->ab0<->xkr2÷y>-0.其,t1.a=x,y)-b=(X2,)i).J1.a,b为非零向量夹角问题数量积的定义COS=部i(°为向i<a'b的夹ft1.).其中,6为非零向收长度问题数圻积的定义a=ai=2÷2-其中=(x,.V).“为非零向埴知识点二用向量方法解决平面几何问逊的步骤(I)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题然化为向心问题:(2)通过向j运舞,研咒几何元素之间的关系.如距离、夹角等何题:(3)把运算结果“鲍成几何关系.I点拨向量集数与形于一身,既有代数的抽象性又有几何的直观性.因比,用向量解决平面几何问题,就是朽几何的证明问题转化为向量的运算何题,将“证”转化为“算”,思培清晰,便于操作.1.判断正课,正确的画Y”,错误的画“X".(1)若4A8。是直角三角形,则有油炭=04)(2)f,A/Cb,则直线AB与CZJ平行.()(3)若平面四边形A8C/)满足A+Cb=0.(Ah-Ab).祀=0,则该四边形一定是菱形.()(4)若A8C为直角三角形,则有X&就=0.()(5)若向吊/&/Cb,则A8CC.()(6)在aABC中,若满足GV卜+碇=0,则G为AABC的玳心.()答案:(1)×(2)×(3)(4)×(5)M6W2. (2023下河南高一校联考阶段练习)已知O,a,8是平面上的三个点,直线A8上有一点C1满足八C+3CB=0.则OB=()A.A-=-OCB.汕+1碇3333C.-O-OCD.-O+OC3333【答案】D【分析】根据题意画出示意图由平面向量的线性运算及平面向量基本定理即可表示出08.【详解】根据题意“A1是平面上的三个点线,且上一点C满足AC+3C8=0则位置关系可用下图表示:所以8为线段AC上靠近C的三等分点则由平面向量的线性运算可得OBOA+Af1.=O+AC=OA+(X-OA=O+OC故选:D【点睛】本题考查了平面向量的线性运算,平面向量基本定理的简单应用.属于基础题3. (2023上重庆高三西南大学附中校联考阶段练习)已知点M为R1.ABC外接圆O上的任意一点,ZAfiC=9(P,=i.C=3,贝川。*-08)8,m的最大值为().IB.IC.fD.5【答案】B【分析】根据向量数量积的几何意义,结合图形即可求解.【详解】设Rt外接圆的半径为J由正弦定理得2r=.与=竺1=2,sinZABC3故r=1.所以(OA-OB).朋夕=BAUM=IAcosZABM)=RMcosZBM.当过点圆上一点M作平行于8C的圆的切线时,此时8MeSNA8H最大.由于0到BC的距离为d=;|网=E所以8M8S/A8M的最大值为"+故选:B4. (2023下湖北武汉高三阶段练习)若点是锐角”<M所在的平面内的动点,且OPOB=OAOB.给出下列命题:3IoPH明恒成立;2囱的最小值为国;3点的轨迹是一条直线;存在点产使附+朝斗。4其中正生的命题为A.(D3)B.(2)C.TOD.(gj【答案】C【分析】OPOB=OAOB可得(QP-QA)1.r从而可判断其他结论.【详解】因为OPoB-Q08所以(OP-OA)OB=O,即(OP-CM)J.08,贝山“卜|。N不一定成立,即错误;由及“1。B是锐角三角形,可得闭画,即2错误;由1得八/IO瓦则点P的轨迹是一条直线,故正确;当PoIPB时.以P。、内为邻边作的平行四边形是矩形.所以存在点使俨。+国=|/成立,即4正弱.故选:C.5.(2023下高一课时练习)在边长为2的菱形A8C中,NBAD60.£为。)的中点,则AC的值为A.IB.事CsD.7【答案】A解析选择向量A8.4力为基底,根据向量数量积的定义求解即可.【详解】选择向量八&AC为基底,则AE=5*+a6,而=Mj-48.HEBD=(B+AD)(AD-AB)=-AB2-BD+D'222=-1x22-1×2×2×s600+22=1.22故选A【点睛】求向量数量积的两种方法:一是根据数量积的定义求解.此时需要先选择基底.将所有向量都用该基底表示,然后按照定义求解;二是根据向量的坐标进行计算,此时需要建立直角坐标系,进而得到向量的坐标,最后转化为数的运算问邈.H.新课导学一+学习探究环节一创设情境,引入IM1.思者:你还记得平面向量学习了哪些知识吗?1.平司向的定义;2.平面向量的加、数集三不线性运算;3.平面向的敷税M算;4.平面向看本定理;5.平面向的坐标表示及坐标送算;前面我们学习了平面向量的概念和运算,并通过平面向量基本定理,把向量的运算化归为实数的运算.本节我们将学习运用向量方法解决平面几何、物理中的问题.感受向量在解决数学和实际问题中的作用.同时我们还将借助向量的运算.探索三角形边长与角度的关系,把解直角三角形问题拓展到解任意三角形问题Iqf1.1:平面几何问题与平面向量之间的对应关系如何?完成下表.几何元索及其表示向量及其运算平行垂直长度央角【预设的答案】几何元末及其表示向量及其运算平行克理aba1.1.b,a=1.>拿直克找。_1.a1.b,<b=G长度A8的长度I丽J硒=病央角ZAOB“cOAOBCOSZAOB=_:-OAOB【设汁意图】从向量的线性运算和数量积运算具有的几何背景出发,建立平面几何元索与平面向量之间的对应关等.通过复习前几节所学知识,引入本节新课。送立知识间的浜系,提高学生概括、美比推理的能力。环节二观察分析,惠知概念由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此平面几何中的许多问题都可用向量运算的方法加以解决.下面通过两个具体实例,说明向量方法在平面几何中的应用.A例I如图6.4-1,OE是ABC的中位线.用向量方法证明:DEHBC,h/fDEc/【设计意图】钊谩数学情境,通过线及(丸线)平行与向量共线关系的实例,让学生感受在教学学习中,利用平面向量研究平面几何1.'111中平行关系这一类问邈.问2:如果两个向量共线,那么向量所在直线的位面关系是怎样的?如何利用平面向量证明线段(直线)平行?【活动预谩】启发学生初步感知用平面向量表示几何图多中的元素,并借助向量运算研究图形中的几何元素之间的关系.分析:我们在初中证明过这个结论,证明中要加辅助线.有一定难度。如果用向量方法证明这个结论.可以取a及Ad为基底,用八8.AC表示。£8(:证明。E=gsc即可。【设计意图】让学生感受利用向量解决平面几何问邈的思路,用基底法表示所求向量是向量表示的一种方法.证明:如图642.因为OE是A5C的中位线.人所以八O=gt8,E=1C从而OE=AE-八D=gACAB=g(AC-AB)AE又8C=AC-A8,所以。Z=g8C'/于是DE"BUDE=1.BCBC2【设计意图】通过例题让学生了解用向量方法证明几何问题,提图6.4-2高学生的解决问题、分析问题的能力.环节三抽微气括,形成柢念平面几何经常涉及距离(线段长度)和角度问题.而平面向量的运算.特别是数量积主要涉及向量的模以及向量之间的夹角.因此我们可以用向量方法解决某些几何问题用向量方法解决几何问题时,通常先用向量表示相应的点、线段、夹角等几何元素.然后通过向量的运算来研究点、线段等元素之间的关系,最后再把运算结果翻译“成几何关系,便得到几何问趣的结论。问4:用向方法解决平面几何问题的图本思路和步骤是什么?【混1设的答案】几何图形到向量T恰当的向量运算T向量到几何关系【设计意图】在数学实践活动中归纳总结用向量方法解决平面几何问题的基本思路.环节四解析理解深化羸念用向量方法解决平面几何问趣的三步曲:(I)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素.将平面几何问题转化为向量问题:(2)通过向量运算.研究几何元素之间的关系.如距离、夹角等问题;(3)把运算结果“翻译成几何关系。【设计意图】通过思考,总结用向量方法做几何问题的步骤.提高学生分析问题、概括问题的能力。环节五收念应用,巩固内化例2如图643,已知平行四边形ABCD,你能发现对角线AC和DCBD的长度与两条邻边AB和AD的长度之间的关系吗?/B图6.4-3【预设的答案】AC2BD2=2(AB2+AD2),冏。°【设计意图】利用向量方法探究平行四边形的两条对角线与两条邻边之间的关系,意图之一仍是体会基底思想,用基底建立。的联系.意图之二是体会涉及两个向量的和或差的模的问题时,只需对向量的和或差的模平方.分析:平行四边形中与两条对角线对应的向量恰是与两条邻边对应的两个向量的和与差我们可以通过向量运算来探索它们的模之间的关系.解:第一步,建立平面几何与向量的联系,用向量表示问题中的几何元素,将平面几何问题转化为向量问题:如图6.44取A反而为基底为基底.设AB=。,AD=b,AC=a+b,DB=a-b第二步,通过向量运算,研究几何元素之间的关系:DCAC=(a+b)2=a2+2ab+b2,s×<上面两式相加,得k+历2=2("+)图6.IIDB2=(a-b)2=a'-2abb2,V/第三步,把运算结果“翻译”成几何关系:AC2+DB2=2(AB2+AD2)【设计意图】通过例题进一步熟态向量的工具作用,提高学生用向量解决几何知板解决问题的能力.环节六归纳总结,反思提升I.用向法解决平面几何问的两种方法(1)基底法:选取适当的基底(尽量用巳知模或夹角的向量作为基底),将题中涉及的向量用基底表示,利用向量的运算法见1、运算律或性质计算:(2)坐标法:建立平面宜角坐标系,实现向量的坐标化,将长度、垂宜、平行等问题转化为代数问题.1.般地,存在坐标系或易迂坐标系的题目用坐标法更简单.2.用向量方法解决平直几何问的步事I几何向.用向鼠二东IHI1.中涉及的几何元化H:将平囿几何化为MJI*H