欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    基于蚁群算法的机器人路径规划研究.docx

    • 资源ID:1307077       资源大小:90.33KB        全文页数:8页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    基于蚁群算法的机器人路径规划研究.docx

    摘要:蚁群算法是一种全局智能仿生算法,具有较强的鲁棒性和环境适应性,在栅格化环境下适用于机器人路径规划,但会带来搜索出的路径拐弯过多、运动延时、移动累计误差增大和产生额外机械磨损等问题。为解决上述问题,提出了路径平滑处理策略,对蚁群算法每次迭代出的最短路径进行了平滑处理,针对每次迭代搜索出的最短路径栅格节点集合,在不妨碍机器人运动的前提下,拉直移动路径或减缓拐弯角度,从而避免不必要的急拐弯。仿真结果表明,加入平滑处理策略后的蚁群算法能够达到有效减少移动路径长度、降低转弯次数、缩短运动时间的目的。关键词:蚁群算法;机器人;平滑处理;路径规划;栅格地图O引言路径规划是机器人运动控制的关键,也是当前人工智能领域的研究热点。机器人的路径规划是指在有障碍物的环境中,按照一定的评判标准,找出一条从起点到终点的最优无碰撞路径。蚁群算法作为仿生智能算法,具有较强的鲁棒性、环境适应性以及分布式计算、无中心控制的特征,国内外学者对此做了大量研究并取得了丰硕成果,这些方法在基于静态障碍环境下均能快速获得最优解,但存在路径中拐点过多、拐弯停顿耗时和产生额外机械损耗等问题。本文从拐点数及转弯角度出发,对蚁群算法每次迭代搜索出的最短路径进行顺滑修正,进一步优化所寻路径,避免不必要的转弯,降低机器人机械损耗。1 环境建模为便于开展路径规划,需要对机器人的行走环境做数字建模处理,将环境信息转换为机器人可识别的数学模型。为不失一般性,采用主流的栅格地图,按照以下定义对机器人行走环境进行建模:1.1 栅格定义以机器人自身尺寸作为栅格大小,从而可以将机器人理想化为一个质点进行处理,确保机器人每次都停留在栅格的中心位置,便于开展无碰撞路径规划。只要栅格内有障碍物存在,则视该栅格为障碍栅格,以黑色栅格表示。否则,该栅格为自由栅格,以白色栅格表示。1.2 坐标系定义以左下角为原点、横向向右为才轴正向、纵向向上为Y轴方向,将运动区域按栅格的大小划分为材和N等分,按照从左到右、从下到上顺序,将栅格编号为1,2,J×/V,如图1所不。栅格,的中心坐标(m,k)与栅格编号/存在以下对应关系:x/=J×(z-l)mod+0.5)%=bx(2f+O.5)经过上述定义,机器人路径规划问题其实就是在自由栅格集合中遍历出所有邻接栅格的子集,并从中搜索出一条最短的邻接栅格路径。2平滑策略路径的平滑程度是度量机器人能量消耗与机械损耗的一个重要参数。拐弯过程中,机器人需要经过减速、提速过程,产生额外的时间消耗、能量消耗和机械损耗,同时急拐弯还容易出现路径累计误差。图1栅格化机器人运动环境地图本文采取通过删除拐弯点、拉直运动路径或缓解急拐弯的方式来平滑机器人运动路径,具体措施为:障碍栅格至平滑路径起始点连线距离如图2所示,现有搜索路径/fJfh出现拐弯点人假设3、6分别为栅格编号八人女三者的最小值和最大值,搜索栅格编号子集1.=a,a+1,a+2,6中的障碍栅格夕,按照公式(2)计算栅格夕到栅格,与栅格A中心连线的距离d,若,则可以删除拐弯栅格7,拉直栅格i和栅格匕以此达到平滑运动路径的目的。图2障碍栅格至平滑路径起始点连线距离d_IGz-M)XP+(七-XQyP+(/一%)y+(阳一4)Xil58上一)2+(一一人)2(2)平滑处理的算法流程如图3所示。图3平滑处理算法流程3基于蚁群算法的路径规划步骤步骤1:采用栅格法构建环境地图,指定机器人初始位置和终止位置并设置各种参数,初始化信息素矩阵(信息素浓度均相同)。步骤2:将蚂蚁种群放置于初始位置,并将初始位置加入禁忌表。步骤3:根据当前信息素浓度计算第A只蚂蚁由栅格,转向栅格j的概率:/=医%F-rySalIoWediO,otherwise公式(3)中,/wded为与栅格/邻接的自由栅格集合,,为栅格I.至栅格)路径上残留的信息素,。、S分别为信息素浓度启发因子和能见度启发因子,为路径能见度函数,其取值由公式(4)获得:"阳=ld(i,j)=1J(Xi-Xj)2+(招一刀丫(4)公式(4)中,(乂,匕)和(孙乃)分别表示栅格彳和栅格/的中心点坐标O所有蚂蚁完成一次搜索迭代后,根据公式(4)对路径上的信息素r进行更新:金0+1)=(12)X马+£八寸01+1)(5)Ar=I匕,、Q!1.k第k只蚂蚁在本次迭代中经过路径&力/、小小叼。(6)公式(5)、公式(6)中,夕为信息素浓度衰减系数,Q为信息素强度,心为第4只蚂蚁在本次迭代搜索中走过的路径长度。步骤4:更新路径以及路径总长度。步骤5:重复步骤3和4,引导蚂蚁到达目的地或陷入死循环,对陷入死循环的蚂蚁采取放弃策略。步骤6:对搜索出的最短路径做平滑处理,得到本轮迭代最优解。步骤7:重复步骤3至步骤6,直到迭代搜索结束,得到最终最优解。4 仿真实验采用IOXlo的栅格矩阵模拟机器人运动环境,使用VC+6.0编程对机器人路径规划进行仿真验证。仿真实验参数需满足:种群数量片100,迭代次数"=200,信息素权重参数启发因子权重参数£=7,信息素强度系数C200,信息素挥发系数夕=08,分别对基本蚁群算法和加入平滑处理策略的蚁群算法进行仿真验证,得到机器人运动规划路径分别如图4、图5所示。图4基本蚁群算法路径规划图5基于平滑处理的蚁群算法路径规划从图中可以看出,经过平滑处理,直角急拐弯由6次降低为1次,拐弯总次数由6次降低为4次,路径总长度由18减少为15.7o5 结语本文研究了基于栅格地图环境的蚁群算法机器人路径规划平滑策略。针对蚁群算法在机器人路径规划过程中出现的拐弯过多、运动延时和产生额外机械损耗等缺陷,提出了对迭代搜索出的最短路径进行平滑优化处理的策略,删除不必要的拐弯点,拉直急拐弯路径,降低机器人运动停滞概率,从而减少运动耗时,降低机械损耗。仿真结果表明,采用对每一轮迭代搜索出的最短路径进行平滑处理的策略能有效提高路径搜索质量,降低机器人运动时间,减少机械磨损。

    注意事项

    本文(基于蚁群算法的机器人路径规划研究.docx)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开