欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    基于室内空间WIFI信号的用户定位分析研究计算机科学与技术专业.docx

    • 资源ID:1153097       资源大小:240.22KB        全文页数:41页
    • 资源格式: DOCX        下载积分:7金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要7金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    基于室内空间WIFI信号的用户定位分析研究计算机科学与技术专业.docx

    前言3第一章绪论51.1 研究背景及其意义51.2 室内定位技术概述51 3位技研九现状.61.1.1 基于信号传播模型的定位方法61.1.2 基于位置指纹识别的定位方法71.4 研究目标91.5 研究内容91.6 论文结构10第二章相关技术与工具112.1 相关技术112.1.1 KNN112.1.2 RandomForest112.1.3 xgboost122.2 相关工具13第三章问题定义143.1 基本概念143.2 位置指纹定位方法15第四章基于RF和XgbooSt的融合定位算法174.1 基于多分类的定位算法174.1.1 位置指纹库构建174.1.2 12l¾184.1.3 RF模型训练214.2 基于二分类的定位算法224.2.1 特征工程234.2.2 Xgboost算法244.2.3 Xgboost模型训练254.3 多分类和二分类的融合定位算法271.1 .1训练阶段274.3 2/isyL28第五章实验与结果分析285.1 实验场景295.2 实验数据1.1 .1.训练集295.22 测试集315.23 定位结果315.3 数据分析325.4 实验过程335.6 实验结果34第六章总结与展望356.1 总结366.2 展望36参考文献37致谢错误!未定义书签。摘要如今,随着无线网络和计算技术进入快速发展阶段,在日常生活中人们对于具体位置信息的需求也愈加迫切,基于位置的服务和应用由此应运而生。随着基于位置的服务的流行,定位技术也逐渐成为了科研热点。现阶段,GPS技术被广泛应用于室外定位领域。而室内环境普遍狭窄,障碍物较多,这些都会对GPS造成干扰,使得GPS出现定位错误。因此,GPS无法实现人们对室内定位的需求。与其他定位技术相比,WIFI具有传输速度快,覆盖范围广,部署成本低,便于移动,在非视距的条件下仍然可以传播等优势,这使得WIFI技术在众多无线定位技术中脱颖而出。在日常生活中,当用户在商场中使用支付宝付费时,我们可以通过用户的手机获得用户当前的GPS定位,接收到的WIFI信息以及(二维码)所在的商店信息。在基于这些信息进行必要的数据挖掘和机器学习训练后,利用WlFl定位算法精确定位出用户所在的店铺。在用户付费前向其推送相关的商品或优惠券,这可以有效促进用户的消费,改善用户的购物体验。为实现在商场中对用户的精确定位,本文基于位置指纹识别算法,设计了一个针对性的集成模型。首先利用基于随机森林的多分类模型和基于Xgboost的二分类模型进行定位,然后通过对上述模型的有效融合提出了一个基于随机森林和XgbOOSt的融合定位算法。在基于真实数据集对本文所提出的集成学习模型和融合模型进行评测后,我们发现,本文所提出的WlFl定位算法在静态情况下的定位准确度可以达到91%。相较于传统的定位算法,其定位精度得到了有效的提高。关键字:室内定位;WlFl技术;位置指纹;机器学习AbstractToday,wirelessnetworksandcomputingtechnologyaremovingintorapiddevelopment.Atthesametime,people'sdemandforspecificlocationinformationbecomesmoreandmoreurgentindailylife,thelocation-basedservicesandapplicationsemergeaccordingly.Withthepopularityoflocation-basedservices,positioningtechnologyhasgraduallybecomearesearchhotspot.Atpresent,GPSiswidelyusedinthefieldofoutdoorpositioning.Theindoorenvironmentisgenerallynarrowandcomplicated,whichinterfereswithGPSandmakesGPSpositioningerror.Therefore,GPScannotmeettheneedsofindoorpositioning.Comparedwithotherpositioningtechnologies,WIFIhasmanyadvantages,suchasfasttransmissionspeed,widecoverage,lowdeploymentcost,easytomove,andcanbetransmittedundernon-visualconditions,whichmakeWIFIbecomeanexcellentchoiceinindoorwirelesspositioningtechnology.Indailylife,whenpeopleusemobilephoneintheshoppingmall,wecangetthecurrentGPSlocationofusers,theWIFIinformationreceivedbythephoneandthestoreinformationinthemall.Afterthenecessarydataminingandmachinelearningtrainingbasedonthisinformation,theWIFIlocationalgorithmisusedtoaccuratelylocatethestorewheretheuseris,andpushrelevantcouponsbeforepayment,whichcaneffectivelypromotetheconsumptionofusersandgreatlyimprovetheuser'sshoppingexperience.Inordertorealizeaccuratepositioningofusersinshoppingmalls,thispaperdesignsatargetedintegrationmodelbasedonlocationfingerprintidentification.Firstofall,usingmultipleclassificationmodelbasedonrandomforestandthebinaryclassificationmodelbasedonxgboosttolocate,andafusionlocalizationalgorithmbasedonRFandxgboostisproposedthrougheffectivefusionoftheabovemodel.Theintegrationlearningmodelandfusionmodelproposedinthispaperareevaluatedbasedonrealdatasets,theexperimentsshowthatthepositioningaccuracyoffusionlocationalgorithmbasedonRFandxgboostcanreach91%instaticcondition.Comparedwiththetraditionallocalizationalgorithm,thelocalizationaccuracyofthefusionalgorithmproposedinthispaperisimprovedeffectively.Keywords:indoorpositioning;WIFltechnology;Positionfingerprint;Machinelearning如今,无线网络和计算技术进入快速发展阶段,与此同时,在日常生活中人们对于具体的位置信息的需求也愈加的迫切,基于位置的服务和应用由此应运而生。随着基于位置的服务的流行,定位技术也逐渐成为了科研热点。现阶段,GPS技术被广泛应用于室外定位领域。然而,由于室内环境普遍较为狭窄且复杂多变,人员的数量、室内的空间大小、建筑物的稀疏程度以及温度等多种因素都可能会对GPS信号造成干扰,使得GPS定位出错甚至失效。因此,GPS无法实现人们对室内定位的需求。如今,WIFl信号普遍存在于办公室、家庭、商场、机场、医院等室内环境中。因此,基于WlFl的室内定位技术并不需要事先在定位区域内安装任何硬件设备,便可以实现室内定位,这可以有效降低在室内部署定位系统的难度以及建设成本。除此之外,与其他定位技术相比,WIFl技术还具有传输速度快,覆盖范围广,部署成本低,便于移动,在非视距的条件下仍然可以传播等优势。本文对室内定位技术进行了深入探讨,主要分析了现有的三种室内定位方法包括基于特定设备的定位方法、基于移动传感器的定位方法以及基于WlFI信号的定位方法,着重介绍了基于WIFI信号的定位方法中的两个典型方法:“基于信号传播模型的定位和基于位置指纹识别算法的定位”。其中,基于位置指纹识别算法的定位方法由于实现简单,成本低,定位精确度高,可扩展性强等优势在许多室内定位方法中崭露头角,逐渐成为室内定位领域的主流方法。在日常生活中,当用户在商场中使用支付宝付费时,我们可以通过用户的手机获得用户当前的GPS定位,接收到的WIFI信息以及(二维码)所在的商店信息。在基于这些信息进行必要的数据挖掘和机器学习训练后,利用WIFI定位算法精确定位出用户当前所在的店铺。在用户付费前向其推送相关的商品或优惠券,这可以有效促进用户的消费,改善用户的购物体验。为实现在商场中对用户的精确定位,本文基于位置指纹识别算法,设计了一个针对性的集成模型。首先利用基于随机森林的多分类模型和基于Xgboost的二分类模型进行定位,然后通过对上述模型的有效融合进一步提高了定位的精确度。本文的主要工作及创新点如下:(1)深入研究了当前的室内定位技术,着重介绍了三种室内定位方法以及两个典型的WIFl室内定位方法,对WlFl室内定位技术的研究现状进行了分析,为本文的定位算法寻找理论支撑。(2)通过对位置指纹识别算法的研究,针对其存在的局限性,在传统的位置指纹识别算法中,引入机器学习算法,设计了一个针对性的集成模型。首先利用基于随机森林的多分类模型和基于Xgboost的二分类模型进行定位,然后对上述模型进行有效融合,从而进一步提高定位精确度。(3)基于真实数据集对本文所提出的集成学习模型和融合模型进行评测,验证相关算法的有效性。第一章绪论1.1 研究背景及其意义如今,无线网络和计算技术进入快速发展阶段,与此同时,在日常生活中人们对于具体的位置信息的需求也愈加迫切,基于位置的服务和应用由此应运而生。“基于位置的服务(LOCatiOnBasedService,LBS)指的是利用定位技术获取用户的定位信息,根据当前用户的需求,为其提供所需要的特定服务”。现阶段在导航、物流、商铺促销、个人跟踪等领域,LBS均展现了不可忽视的存在。随着基于位置的服务的流行,定位技术也逐渐成为了科研

    注意事项

    本文(基于室内空间WIFI信号的用户定位分析研究计算机科学与技术专业.docx)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开