海洋石油装备材料的应用现状及发展建议.docx
海洋石油装备材料的应用现状及发展建议O引言21世纪是海洋的世纪,海洋在国家经济发展及维护国家主权的地位更加突出。21世纪以来,世界新增油气储量和产量已主要来自于海洋。预计到2015年末,海洋油气产量占全球总产量的比例将分别达到39%和34%。我国海洋油气资源储量巨大,而海上石油资源探明程度约为12.3%(世界平均约为73.0%),天然气资源探明程度约为10.9%(世界平均约为60.5%),探明率远低于世界平均水平,因此我国海洋油气资源勘探开采潜力巨大。海洋环境条件恶劣,没有高性能材料作为保障,海洋油气开发将受到很大制约。近年来,我国海洋石油装备材料虽已取得长足进步,但与国际先进水平和我国发展需求相比,仍然存在诸多差距和不足。首先,对于海洋石油装备关键及核心材料,我国尚不能完全自给。例如海洋自升式平台用大厚度(厚度超过15Onlm)齿条钢,低温环境用高强度F级平台钢,水下井口和采油树用超级双相不锈钢、铁锲基合金、锲基合金等,在性能稳定性及批量供货能力等方面还与国外存在差距。其次,我国海洋石油装备材料应用研究基础薄弱,无法对材料的合理选用提供技术支持。主要体现在:1)材料基础数据匮乏,如缺乏相关的材料标准体系;2)材料服役条件(环境和载荷)研究不足,如材料在海洋环境下的腐蚀数据掌握还不全面,限制了国产材料在设计中的选用。再次,装备上下游企业沟通及合作不通畅,造成装备领域与材料制造环节的脱节,导致材料单位无法根据装备需求研究开发新产品,装备企业舍近求远采购国外高价材料,而对国内已开发的成熟材料不闻不问。鉴于以上原因,导致我国海洋石油装备材料的研发及应用无法满足工程需求,已成为制约海洋石油装备发展的主要瓶颈。因此,发展高性能海洋石油装备材料对于海洋油气资源的高效开发利用有着重要的战略意义。中国应力腐蚀试验技术领航者西安力创Http:/慢应变速率拉伸应力腐蚀试验机 铝合金海水应力腐蚀试验机 高灌总反应力腐使试就机 表面飞赛应力JS强试舱机 可控湍流应力腐蚀试靛机,½ 029-84981777 84870083E-mail: letry电化学工作站-腐蚀与防护机理研究 腐蚀监测工程-腐胸除预警与评估电风房计惶监测仪/大气Jita喊舞仪/涂层IR蚀监测仪/ 到RMdJR愉乩潸仪/阴极保护数果采麓器/电化学工作站联康电慎:027 67M99013971066778 p.汉K4M仪股份有幅公中 httHwww<otest 武汉樽普防工程我黑公RJ httpswww.corrp.co<1海洋石油装备材料的特殊要求与陆地环境相比,海洋环境更为苛刻、复杂。海洋石油装备材料在安装、服役期间会承受多种载荷的影响,同样,也会受到海水或/和油气介质引起的腐蚀,以及可能遇到的低温或高温环境的作用。海洋石油装备材料的载荷条件根据产生原因可分为:建造载荷、功能载荷、环境载荷以及偶然载荷1O建造载荷是系统在建造时,包括安装、试压、试运行、维护和维修产生的载荷。功能载荷是指系统在运行期间,本身存在的载荷和由于使用所引起的载荷。环境载荷即周围环境作用于系统上的载荷,其包括风载、流体动力载荷、波浪和海流载荷、冰载荷、地震载荷等。偶然载荷是指异常和意外情况下施加于管道系统上的载荷。海洋石油装备材料在建造和服役期间,要充分考虑评估各种载荷单独或复合作用的影响,确保材料满足服役要求。海洋腐蚀是海洋环境区别于陆地环境的主要表现之一。海水盐浓度高、富氧,并存在着大量海洋微生物和宏生物,加之海浪冲击和阳光照射,海洋腐蚀环境较为严酷。另外未经脱水、脱H2S和C02的油气介质是典型的Co2、H2S、Cl一共存环境,可对接触到的材料产生严重的腐蚀作用。海洋腐蚀已成为影响海洋装备设施服役安全性和使用寿命的重要因素,应引起高度重视。按照国内外公认的统计,腐蚀损失约占国民经济生产总值的3%-5%o2014年我国GDP总量超过63万亿,按3%计算,腐蚀经济损失超过189万亿人民币。其中海洋腐蚀占有很大的比例2。主要的海洋腐蚀形式包括均匀腐蚀、点蚀、应力腐蚀、腐蚀疲劳、腐蚀磨损、海生物(宏生物)污损、微生物腐蚀、H2S/C02腐蚀等。典型腐蚀现象如图1所示。(U)平台腐蚀(h)海洋生物腐蚀图1海洋腐蚀同时,海洋环境的温度并不是一成不变的,海水温度随纬度、季节和深度不同而发生变化,油气介质的温度也随地质条件、开发阶段的变化而有所不同。北极地区的极限低温接近一6(C,新采油气温度达到100。C以上。环境温度的变化不仅引起材料腐蚀速率的变化,同时也引起材料性能的改变。低温环境可能导致材料的低温脆断,高温环境对材料的耐热性、抗蠕变性能以及高温稳定性提出更高要求。可见,海洋石油装备材料承受苛刻的服役条件,包括载荷条件和环境条件。而多数情况下,载荷条件和环境条件并非单独起作用,常常共同叠加作用于系统材料,进一步加剧服役条件的复杂性,易导致材料的加速破坏。以深海油气钻采为例,螺杆钻具寿命仅为80h,钻铤寿命仅为20Oh500h,震击器震击次数仅为100次,随钻震击器的工作时间仅15d30d,所用材料在强度、耐蚀性等方面暴露的问题严重影响了深海油气钻采工作的开展;深海立管与采油树等特殊部位管接头、脐带缆、系泊链、万向轴等轴类耐蚀承力结构件、各类深海泵体、阀门、固定销、各类紧固件等均存在强度、腐蚀等方面的问题3o为此,在海洋石油装备材料的选用方面,须秉承从服役条件出发的设计理念,使材料满足最低服役条件要求,以保障海洋石油装备的安全运行。海洋石油装备处于复杂多变的海洋环境中,安装和维修不仅价格昂贵,且操作较为困难。海洋石油装备一旦发生失效事故,将造成重大的经济损失,甚至可能导致油井报废、环境严重破坏以及人员伤亡等多重后果。1988年,北海PiPerAIPha平台发生爆炸事故,导致167人死亡,62人受伤,直接经济损失近28.7亿英镑,堪称目前世界海洋石油工业史上最严重的一次灾难性事故4。2010年,英国BP公司在美国墨西哥湾租用的钻井平台“深水地平线”发生爆炸,导致数人死亡或失踪,并造成大量石油泄漏,酿成一场史无前例的经济和环境惨剧,如图2所示。鉴于以上原因,海洋石油装备必须具备高的安全性、可靠性,这对海洋石油装备材料的性能均匀性和质量稳定性提出了更高要求。(U)平台爆炸(b)大面枳漏油图2墨西哥湾平台事故2海洋石油装备材料的应用现状2.1 碳钢与低合金钢在海洋石油装备材料中涉及的碳钢和低合金钢,主要包括平台用钢、钻机井架及底座用钢、管线钢和立管用钢等工程结构钢,以及钻机(井架及底座外)、水下井口头、采油树、防喷器、管汇等设备零件用调质钢、低碳马氏体钢、渗碳钢、渗氮钢等机械制造用钢。2.1.1 工程结构钢1)平台用钢平台用钢开始于19世纪末,初期在浅海水域使用栈桥作为平台,采用栈桥用钢。1947年,钢质导管架平台首次出现于墨西哥湾。此后海洋平台得到了迅速发展。现有的平台用钢是由船板钢或压力容器用钢移植而来,主要参考AB来BV、CCS、DNV、GL、LR、KR、NK、RLNA等九大船级社规范。中国船级社(CCS)材料与焊接规范规定了一般强度、高强度以及高强度淬火回火钢等三类强度级别钢种,每一强度级别又按照韧性要求不同,细分为多个质量级别(A、B或F、I)、E)。除船级社规范外,平台用钢还常采用ENIO225、GBT712.YBT4283>APlSPeC2H、APlSPeC2W、APlSPec2Y以及ASTMA514/A517等标准。目前,平台用钢的最高强度级别达到690MPa,最低冲击试验温度为一60。C(F级)。为保证钢材性能,对这类钢的内在质量要求较高,既要求钢中含有较低的有害元素和气体、夹杂物数量,又要求钢材具有良好的表面质量。2)井架与底座用钢井架及底座是钻机的重要组成部分。井架及底座最早采用A3或16Mn工、槽、角钢,致使井架及底座比较笨重。目前井架及底座用钢主要选用低合金高强度钢。这类钢在GB1591-1988标准中称为低合金结构钢,在1994年标准(GBI5911994)中改称为低合金高强度结构钢。现行的GB/T1591标准中包括了Q345、Q390、Q420、Q460、Q500、Q550、Q620和Q690等八个强度级别。钢材可以热轧、控轧、正火、正火轧制或正火加回火、热机械轧制(TMCP)或热机械轧制加回火状态交货。通过添加Mn、Si、V、Nb和Ti等合金元素,低合金高强度结构钢在提高强度的同时,保证了良好的塑性和韧性,以及较好的可焊性和冷加工性能。另外,YB/T4274中的SM490YB、SM490B、SM400B等热轧H型钢也被用于制作钻机井架及底座。随着超深水钻井的开发,井架及底座用钢向高强轻量化发展,Q420、Q460等高级别钢种将大量使用。高强度钢种的使用,可大幅度减轻结构自重,明显提高井架及底座的承载能力。3)管线钢管线钢主要采用APlSPEC5L、IS03183标准,对于海底管道用管线钢同时也执行DNVOS-FlOl标准。由于早期油气管道管径小、压力低以及冶金技术的限制,直至20世纪40年代末管道用钢一直采用C、Mn、Si型的普通碳素钢,典型化学成分为:0.l%0.25%C,0.40%0.7%Mn,0.l%0.5%Si,以及S、P和其他残存元素。随着管道工程对钢管要求的提高,管线钢开始采用低合金高强度钢。与普通碳素钢一样,普通低合金高强度钢主要在热轧或正火状态使用。随着管道输送压力和钢管管径的增加,19671970年期间API5LX和5LS增加了X56、X60和X65钢级,从此管线钢进入了微合金化和控轧生产阶段。管线钢成为了国内外微合金化技术应用的典型代表。目前,管线钢的最高强度级别为X120。冶金技术、TMCP技术以及超快冷技术的进步,使现代管线钢具备了优异的综合力学性能,见表1,X90、XlOO及X120高钢级管线钢均具有优异的强韧性匹配,其中X120管线钢屈服强度超过840MPa,30。C冲击功大于250J。管线钢生产几乎应用了冶金领域近20多年来的主要新工艺、新技术和新设备,TMCP工艺生产的管线钢及钢管在海洋石油装备中的应用也越来越广泛。表1典型高强度管线钢管的力学性能6r«>4执检值70比CVM“金功内Q厂19.66437SI0.9224329-IOMOfl«F16.3(M7J50.8826309-IOMO19.66907420.912A310-IOX1008B型17.g681nO.S722267-IOX100WSC16.08280.9520g-30i19.17J7HOO0.92IlXO3019.00350.9031IIB30KIA16.0M3m0,7314.)2SO-JO目前,国外海底管道中应用的最高级别管线钢为X70,钢管壁厚最大为41.Onrnu我国海底管道建设中普遍应用的是X65管线钢,钢管最大壁厚为31.8mmo2012年完工的南海一荔湾输气管道工程项目代表了国内海底管道建设的最高水平,开创了我国150OnlnI作业水深的管道工程记录。为适应海底管道的安装要求和服役环境,与陆地管线钢相比,海底管线钢的合金设计更为严格,其特点为:(1)低的碳含量;(2)低的碳当量;(3)低的S、P含量。另外,海底管线钢在性能和其他方面的主要特征还包括:(1)高